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Let (X, v) be a topological space and v cv*. Then v* will be
called a simple extension of v if and only if there exsists an AcX
such that v*- {O U (O’ ( A) 0, 0’ e v}. In this case we write r*-v(A).
This definition is due to N. Levine 2. N. Levine has obtained
some interesting results about simple extensions of topologies 2.

It is the purpose of this note to consider the simple extensions
of regular or other several topologies. In the next, we shall consider
a generalization of simple extensions in 3.

Let (X, z-) be a topological space and v*-v(A). Then we shall
notice that for each e A, the v-open neighborhood system of is
a *-open base of and for each 0 e A, the family {V() A IV()"
v-open neighborhood of x} is a *-open base of x. Thus it is sufficient
to consider these open bases.

The notations which will be used in this note are chiefly following.
A denotes the complement of A. fi and .* denote the closure oper-
ators relative to r and v* respectively. By U(), V(), and W()we
denote v-open neighborhoods o . (A, D A) denotes the subspace A
of (X, v), that is, v DA denotes the relative topology of A with
respect to v.

The following facts have been shown in Lemma 3 of 2. Let
(X, v) be a topological space and *-v(A). Then (A, v A)-(A, v* A)
and (A, v D A) (A, v* A). This follows from the above remark
about the v*-open base of. 1. Simple extensions of regular topologies. In this section,
we shall obtain a result about simple extensions of regular topologies
which is better than N. Levine’s theorem [2 and its application.

Let (X, v) be a topological space and A a subset of X. We shall
say that A is R-open in (X,v) if and only if for each eA, there
exists a V(x) such that V()AcA, i.e., A is open in (A, vDA).

Theorem 1.1. Le (X,v) be a regular space and v*-v(A). Then
he following conditions (i),-(iii) are equivalent"

(i) A is R-open in (X,
(ii) A A is closed in (X,r);
(iii) (X, r*) is regular.

Proof. It is evident that (i) and (ii) are equivalent. Then we
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shall only prove that (i) and (iii) are equivalent.
(i)--(iii) Let x e A and let V(x) be an arbitrary v*-neighborhood

of x. Since V(x)is also a v-neighborhood of x and (X, v) is regular,
there exists a U(x) such that U(x)c V(x). U(x) is a v*-neighborhood
of x and since rr*, -U(XU(x) V(x). Let x A and Y(x)A
an arbitrary v*-neighborhood of x. From (i), there exists a U(x)
such that U(x) V(x) and U(x)AA. By regularity of (X, v),
there exists W(x)such that W(x)U(x). Then W(x)A is a v*-

neighborhood of x and W(x) A* W(X) I- A U(x) fi- U(x) A
V(x)A. Hence the regularity of (X, v*) is proved.

(iii)--(i)" Assumed that A is not R-open in (X, v). Then there
exists a point x e A such that for any V(x), V(x)Aq?.A. We shall

next prove that for each v*-neighborhood V(x) A, -F)-A. A.
Since V(x) A A, there exists a point y e V(x) A- A. Hence y e A
and v-neighborhood system of y is a v*-open base of y. Since
ye V() and yeA, for any U(y), U(y)V(x)A:/:. Hence ye

V(x)A. Thus (X, v*) is not regular. This completes the proof.
This theorem is a generalization of Theorems 2 and 3 in [2.
Corollar, 1.1. Let (X, ) be a regular space. If (X, v(A))

and (X, r(B)) are regular, then (X, r(AB)) is regulur.

Proof. From the condition (ii) of Theorem 1.1, we can easily
see that AB is also R-open in (X, ).

Under the same conditions of Corollary 1.1, we can easily see
that (X, v(AUB)) and (X, v(A)) are not necessarily regular.

Theorem 1.2. Let (X, v) be a completely regular space and
v*-v(A). Then a necessary and sujcient condition that (X, v*) be
completely regular is that A is R-open in (X, v).

Proofi The necessity is obvious from Theorem 1.1. Let A be
R-open in (X, v). Case 1" x eA. Let V(x) be an arbitrary v*-
neighborhood of x. Since V(x) is, of course, a v-neigborhood of x,
there exists a continuous mapping f from (X, v) into the closed
interval [0, 1 such that f(x)-O and f(V(x))-1. Since rcr*, f
is continuous in (X, v*). Case 2: x e A. Let V(x) A be an arbitrary
v*-neighborhood of x. Since (X, v*) is regular by Theorem 1.1, there
exists an U(x) A such that U(x) A* V(x) A. Since (A, r A)-
(A, * A), (A, v* A) is completely regular (because any subspace
of a completely regular space is completely regular). Hence there
is a continuous mapping h from (A, v* A) into [_0, 1 such that
h(x)-0 and h(A- U(x) gl A)- 1. We define a mapping f so that for
y e A, f(y)- h(y) and for y A, f(y)- 1. Since -FX-)--J A, it
follows that f is a continuous mapping from (X, v*) into [0, 1.
Clearly f(x)-O and f(X- V(x) A)- 1. Therefore (X, r*) is com-
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pletely regular. This completes the proof.
This theorem is a generalization of Theorem 4 in 2.
Theorem 1.:. Let (X, v) be a metvizable space and v*-v(A).

In order that (X, v*) be metrizable, it is necessary and suicient
that A be R-open in (X, v).

Proof. The necessity is obvious from Theorem 1.1. Let A be
R-open in (X, v). Since (X, r) is T and regular, (X, r*) is also T
and regular. Nagata-Smirnov theorem asserts that regular T-space
is metrizable if and only if its topology has a a-locally finite open
base (cf. 3, 4). The topology v has a a-locally finite open base- , where each is a locally finite collection of open sets.

It is evident that - {VAIVe} is an open base of (X,
and and V A Ve 3} are locally finite collections of v*-open
sets. Therefore, (X, v*) is metrizable. This completes the proof.

2.. Simple extensions ot several topologies.
Theorem 2.1. Let (X, 7) be a connected space and 7"- 7(A).

If A is dense in (X, v), $hen (X, v*) is connected.
Pvoof. Assume that (X, v*) is not connected. Then there exist

two non-void v*-open sets G and G such that G [2 G-X and G. On the other hand, (X, v)is connected and hence either G or

G is not open in (X, v), say G. Then there is a point x e G such
that for any V(x), V(x)G. Case 1" eA. Since V() is any
v*-neighborhood of , e(* which contradicts. Case 2" e A.
Now there is a point ye V()G for each V(). If yA, then
there is a v*-neighborhood V(y) such that V(y)G, since G is

open. Since V(x) V(y) is a v-neighborhood of y and A-X,
(V(x) V(y))A(V(x)A)G. If ye A, then there is a V(y)A
such that V(y)AG. In the same way, (V(x)V(y))A
(V(x) A) G. Hence x e (* which is a contradiction. This com-
pletes the proof.

Since the conditions of N. Levine’s theorem [-2, Theorem 9 is

that A is dense and connected in (X, v) (hence (X, v) is connected),
this theorem is a generalization of Theorem 9 in [2.

Let (X, v) be a topological space and v*-v(A). Now we shall
consider the case Ae v. Then A is clearly open and closed in (X, v*).
Hence (X, v*)is the union of two disjoint open and closed subspaces
(A, v A) and (A, v A). In general, let P be a topological property
satisfying the following conditions:

1 If (X, v) has property P, then any open (or closed) subspace
of (X, v) has property P;

(2) Let A and B be separated sets in (X, v), i.e., AB-
A/=. If the subspaces (A, v A) and (B, v B) have property
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P, then (A @ B, r (A t0 B)) has property P.
Theorem 2.2. Let (X, r) be a topological space and v*-r(A)

and Ace r. The space (X, *) has property P if and only if (A, r A)
and (Ac, v Ac) have property P.

Proof. Let (X, r*) has property P. Since A and A is open and
closed in (X, r*), (A, r A), and (A, r A) have property P from
(1). If (A, rA) and (A, rA) have property P. Since A and A
are separated in (X, r*), (A A, r* I (A A))-(X, r*) has property
P from (2).

Almost all topological properties except the connectness satisfy
property P. Therefore, Theorem 2.2 is a generalization of Theorems
2, 4 and 5 in [2.

3. Extensions ot regular or connected topologies. In this
section, we shall consider a generalization of simple extensions, i.e.,
ordinary extensions of topologies.

Let (X, ) a topological space and let gl-{A} be a collection of
subsets of X. We define a topology r which shall be called a
extension of r by t in the following way. For x A, a new

open base of x is the original open neighborhood system of x and
for xe A, a new open base of x is the family which consists of
all intersections of an original open neighborhood of x and an inter-
section of any finite number of sets (containing x) o.f I.

Let (X, r) be a topological space and let be a collection of
subsets of X. For convenience, by F, G and H we shall represent
the intersections of any finite number of sets of . We shall say
that I is R-open in (X, r) if and only i.f for each F and for each
xe F, there exists a V(x) and a G containing x so that for each
y e V(x) -F, there exists an H containing y such that y e }-/ G.

Since the intersection of a finite number of R-open sets is also
R-open from Corollary 1.1, it is evident that the collection which
consists of R-open sets is R-open. But the converse is false. Because,
for any subset AX, the collection {A, A} is R-open. If for any
a, the collection 92 is R-open, then a collection U is R-open.

Theorem 3.1. Let (X, v) be a regular space and let -{A}
be a collection of subsets of X. The space (X, rt) is regular if
and only if I is R-open in (X, r).

Proof. Sufficiency. Suppose that is R-open in (X, r). For
xe [2 A, the regularity at x is obvious. Forxe @ A,let V(x)F
be an arbitrary r-neighborhood of x. From the assumption, there
exists a U(x) G such that U(x) Gc V(x) F and it satisfies the
condition of the above definition. Since (X, r) is regular, there is a



No. 1 Extensions of Topologies 15

W(x) such that W(x) U(x). Then W(x) G is a r-neighborhood
of x. We shall show that W(x) G V(x) F, where 2r denotes
the closure of M in (X, r/). Since W(x) G W(x)
and for any point y e W(x) G and for any V(y) H(y e H),
(V(y) H) (W(x) G) V(y) (H G), it follows that y e V(x) G-
F, i.e., y e F. Hence W(x) G V(x) F.

Necessity. Assume that I is not R-open in (X, v). Then there
exist F and x e F which satisfy the following conditions. Let
V(x)G be an arbitrary vI-neighborhood uf x. Then there exists
a point ye V(x)-F such that for any H(y), yeHfiG, i.e.,
for any neighborhood V(y)H, (V(y)H)(V(x)G). Hence
y e V(x) G. Since y e F, V(x) G F. Therefore (X, rE:) is not
regular. This completes the proof.

This theorem is a generalization of Theorem 1.1, since if a col-
lection which consists of only one set is R-open, then its set is R-
open. The definition of R-open collection is complicated and not
beautiful. However, this complicated condition is required even in
the case when the collection consists of only two sets.

Theorem 3.2. Let (X, v) be a metrizable space and let I be
a a-locally finite collection of subsets of X. The space (X, v) is
metrizable if and only if I is R-open in (X, v).

Proof. In the same way as Theorem 1.3, it is sufficient to show
that v0/ has a a-locally finite open base, but it is easily seen from
the fact that the family consisting of all intersection of any finite
number of sets of is a-locally finite.

This theorem is a generalization of Theorem 1.3, but if we omit
the "a-locally finite", then this assertion is false. For example, let
X:{(x, y)ly>__0} and let v be the usual topology on X. Let A,:
{(x, y)[(x-p)/(y-n-)<n-}U{(p, 0)} and -{A IP" real number,
n-l, 2,...}. Then I is R-open and not a-locally finite. The space
(X, v/) is well known as the example which is regular and not
normal (hence not metrizable) (cf. 1, p. 133, I).

Theorem 3.3. Let (X, v) be a connected space and let
collection of subsets of X. If each intersection of any finite number
of sets of I is dense in (X, r), then (X, r) is connected.

Proof. Assume that (X, vI) is not connected. Then there exist
two non-void v/-open set O and 0. such that O U 0-X and O
But (X, v) is connected and hence either O or O is not v-open, say
0. Then there exists x e O such that for any V(x), V(x)O.
Let V(x) F be an arbitrary neighborhood of x. For every V(x),
there exists y e V(x)O.. Since y e 0. which is v-open, for some
V(y) G (y e G), V(y) G0. Since FG is dense in (X, r),
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(V(c) V(y)) (FG)(V(x) F) 0. Hence e which is a con-
tradiction. This completes the proof.

This theorem is a generalization of Theorem 2.1.
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