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1. Introduction. Let £ be a set, and denote by X a Banach
space of real-valued bounded functions f(x) defined on 2 and normed by
fll= sup | f(x)|. We assume that X is closed with respect to the lattice

operations (fA9) (@)= min (f(x), g(x)) and (fV g)(®)= max (f(x), g(x)).
For any linear subspace Y of X, we shall denote by Y* the totality
of functions fe Y which are =0 on £, in symbol f=0. We also
use the notation f*=fVv0 and f~=(—f)VvO0.

We denote by L(X, X) the totality of continuous linear operators
defined on X into X. A family {J,; A>0} of operators € L(X, X) is
called a pseudo-resolvent if it satisfies the resolvent equation
(1) In—=Ju=(t—N)J\J ..

Suggested by the case of the resolvent J,=(\I— A)™* of the infinitesimal
generator A of a semi-group {7',; t=0} of operators € L(X, X) of class
(Cy)? mapping X* into X+, we shall assume conditions:

(2) J, is positive, in symbol J,=0, that is, f=0 implies J, f=0

for all A>0.

(3) [[AJL]|=1 for all A>0.

Then, an element fe X is called superharmonic (or subharmonic) if
NLSF=S (or N f=f) for all A>0, and an element fe X is called a
potential if there exists a ge X such that f= -hm Jrg, where s-lim

denotes the strong limit in X, i.e., uniform llmlt on Q.
We shall be concerned with the potential operator V defined by
(4) Vf= s-lxifn Jiof (whens-lim J, f* and s-lim J, f~ both exist).
0 AlO AlO

Our main results are stated in the following two theorems.

Theorem 1. Let J, satisfy (1) and (2). Then V=0 and we have:
(5) Let feXf,geX* and A>0, and define V,=V-+\'I If

(Vif)@)=(Vg)(x) on the support (f), we must have V,f< Vy.

(the principle of majoration).

Theorem 2. Let J, satisfy (1), (2) and (3). If the range R(V)
of the potential operator V is dense in X, then R(V,) is also dense
in X and the null space N(V)={f; Vf=0} consists of the zero vector
only. Moreover, J, is the resolvent of a linear operator A with dense
domain D(A) defined through the Poisson equation AVf= —f.

Remark. Two special cases of X are important for concrete

1) See, e.g., K. Yosida: Functional Analysis, Springer, to appear soon,
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application. The first case: 2 is a locally compact Hausdorff space
and X is the totality of real-valued continuous functions defined on
2 which tend to zero at infintty; X is the closure with respect to
the norm || f||= sup | f(x)| of the space C,(2) of continuous functions

with compact support defined on 2. The second case: 2 is a o-additive
family of subsets of a set, and X is the Banach space of o-additive
measures defined on 2 and normed by the total variation of the
measure. The first case was discussed by G. A. Hunt? in the view
to characterize the operator ¥ defined through

(4y (TH@=| T,

where {T',; t=0} is the semi-group associated with a Markov process
in a locally compact space 2. In the first case, we can prove, under
condition(5), an analogue of Hunt’s research:
Theorem 3. If V=0 and if R(V) is dense in X, we have:
(5), Let feCy(2)* and g € X*, and let (Vf)(x)<(Vg)(x) on the support
(f). Then Vf=Vy.
If furthermore, V(Cy(2)*) is dense in X*, then we obtain:
(5), Let feCy(2) and let (Vf)(x,)= ma;c(Vf )(@). Then f(x,)=0.
Theorem 4. Let V be a closed ai‘isnear operator whose domain
D(V) and range R(V) both belong to X=C,(2)* in such a way that
V satisfies (5) and further conditions:

(6) V=0,

(7) Vf is defined if and only if Vf* and Vf~ are both defined.
(8) N(V)={0}.

(9) C(DSD(V).

(10) V(C\(£2)*) is dense in X* and V,(C,(2)) is dense in X for A >0.
Then, for the operator A defined through the Poisson equation AVf=
—f and for A >0, the resolvent J,=(\I—A)™* exists as an operator
€ L(X, X) such that (1), (2), (3) and (4) hold.
2. Proof of the theorems. We shall rely upon a lemma which
is a special case of the so-called Abelian ergodic theorem.?®
Lemma., Under condition (1), we have
(11) JiJu=Ju e
Under conditions (1) and (3), we have:
(12) R(J,) is independent of X\, and its closure R(J,)" coincides with
{5 s-lim NJyf=f}.

2) Markoff processes and potentials, I, IT and III, Illinois J. of Math., 1, 44-93,
316-469 (1957) and 2, 151-213 (1958). Further researches are given, e.g., in Séminaire
du Potentiels, dirigés par M. Brelot, G. Choquet et J. Deny, Fac. Sci. Paris (1950-).

3) K. Yosida: Ergodic theorems for pseudo-resolvents. Proc. Japan Acad., 37,
422-423 (1961). Cf. E. Hille-R. S. Phillips, Functional Analysis and Semi-groups,
Providence (1957).
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12y R(I—\J,) is independent of \ and its closure R(I—\J,)* coincides
with {f; s-l)\i}lol N\ f=0}.
Proof. See the reference cited in the footnotes 1) and 3).
Proof of Theorem 1. The operator V defined through (4) satisfies
(13) VI=ANVf+ L f=VNL S+ f for fe D(V),
because of (1), (4) and (11). Thus, if f=0 belongs to the domain
D(V), then Vf is superharmonic by J,f=0.
Next we show that, if fe X* be such that pJ,f=f for all p
with 0< =X, then
(14) l’glg (S =NT) [ )(@) =Ty S )(@)—fi(x), Where

Fil@)= lim (1 f)@)".
To prove this, we first observe that M(I—X\J,)f is =0. We have, by (1),

TS NILYNTuf = um T = pduf S,

We also have, by (1),
I+ (=N I— pd W) f=T =N\ S

Hence, if 0< <X, the condition pJ,f=<f (for 0<p=\) implies that
0= pJ f=NJ,f. Thus lim (@], f)(x)=f,(x) exists and so we obtain (14).

We are now able tc? l1(;rove (5). Put v(x)= min ((V, ) (@), (Vg)x)).
Then v=0 by f=0,9g=0 and V=0, and we have
(15) pJo=v for O0<p=N.
We have only to show that pJ,V,f<V,f. But we obtain

pd Vif=pd Vi+ % Jof=pd VF+J.f+ (%— l)J,Lf

= Vi+(E-1)If<VISVAS.

Thus w=X\(I—X\J,)v=0 and we have, by (14),

(16) lirln (Jow)(x)=Jw)(@)—v,(x), where v,(x)= li{n (e ) () = 0.
wlo wlo

Hence, by (13) and the positivity of J,, we obtain

a7 lilln (Juw)(@) = (W w)(®) = v(@) — N w ()

=ALVLO@)=(V)(@)
=(VaH)@)—N"f ().
We have (V, f)(x)=v(x) on the support (f) by hypothesis. Hence, by
17, f(x)=w(x) on the support (f), and so, by f=0 and w=0, we
must have f=<w. Therefore, by (17) and the positivity of J,., we obtain
(ViHx)= l;rlrg (Juw)(@)+1"w(x) =v(x) < (Vg)(x), that is, V,f< Vy.

Proof of Theorem 2. By (13), we see that R(V)*=X implies
R(V,)*=X and R(J,)*=X. R(J,)*=X implies, by (12), that N(J,)=

4) Originally, the author tacitly concluded that s—}\ilm AJAf=fn exists. This was
0
pointed out by Mr, D. Fujiwara.
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{0} which, in turn, implies the existence of the inverse Jy'. By (1),
it is easy to see that (\[—J3") is independent of \ so that J,=(O\I—A)™!
where A=\I—J;'. Moreover, D(A)=R(J,)2R(V) is dense in X. By
(13), Vf=0 implies J,f=0 so that N(V)={0} if R(V)*=X. Finally,
we have, by (13) and J,=(OI—A)7,

W—-A)Vf=\Vf+f, that is, AVf=—f.

Proof of Theorem 3. We first prove (5),. Since R(V) is dense
in X, there exists an A#=0 such that f(x)<(Vh)(x) on the support
(f) which is compact by hypothesis. For any ¢>0, take A >0 such
that A <e. Then (V,f)(@)=(Vg)@)+N"f(2)<(V(g+eh))(x) on the
support (f). Hence, by (5), Vf=V,.f<V(g+ch). Letting ¢ |0, we
obtain Vf< Vy.

Proof of (5),. Since Vfe X=C\(2)*, we must have (Vf)(x,)=0.
Let us tentatively assume that (Vf)(x,)>0. Then we can show that
S(¥)=0 at some point ye E={x; (Vf)(@,)=(Vf)(®)}. Since V=0, the
condition (Vf)(x,) >0 implies that f* is not equal to zero. For any
point ¥ € F/ Nsupport (f*), we have surely f(y)=0. If ENsupport (f*)
is void, then there exists an &>0 such that (Vf)(x,) >¢ and that
(VAY2)=(VSf)=x,)—e on the support (f*). Since V(C(2)*) is dense
in X* by hypothesis, there exists an A=0 such that (Vh)(x,)=
(V) (x)—e and (Vh)x)=(Vf)(x,)—e on the support(f+). Hence
(V@)= (V) @)+ (Vh)(@) on the support (f*), and so, by (5), we
must have Vf=Vh. Thus we have a contradiction (Vf)(x,)=
(Vh)x)=(Vf)x,)—e. We now turn to the general case (Vf)(x,)=0,
and take any compact set E of 2 containing «, as an interior point.
Since V(C,(2)*) is dense in X*, there exists a ge Cy(2)* such that
(Vg)(@o) > max (Vg)(x). Then, for any e >0, the function (V(f+¢eg))(x)

tEQ—E N
takes its positive maximum at a point € £ and not at points outside

E. Hence, as proved above, there must exist at least one point y e E
such that f(y)+eg(y)=0. Therefore, we obtain f(x,)=0 by letting
e]0.

Proof of Theorem 4. By (8), we can define the operator A
through AVf=—f. Thus
(18) W—-A)Vf=AVf+f.
We first prove that the condition V,f=0 with A>0 implies that
f=0. For, then (V,f")(@)=(Vf )(«x) on the support(f*) and so
V=V ft=Vf by (5). Similarly we obtain Vf*=Vf~ and hence
Vf=0 so that f=0 by (8).

Therefore the inverse J,=(\I—A)™" exists as an operator which
maps AVf+f) onto Vf. We can prove that
19) J,=(I—A)™ is positive.
Let =0 be € D(J,). Then J,h=¢g=Vf with fe D(V) and
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(20) h=OI—A),h=xg— Ag=\Vf+f.
Since =0, we have WV @)=\ Vf)x)+ f(«) on the support (f7)
and so, by (6), AN\Vf =AVf~+f~, that is, Jih=Vf=N"f"=0.

Since A is a closed linear operator with V, we see that D(J,)*2
Vi(Cy2))*=X implies, by V=0, that >0 is in the resolvent set of
A and J,=(0\I—A)"e L(X, X).

We next show that (8) is true. Let he V,(Cy(2)). Then, by (20),
we can show that m1n M) SNV = max h(x). Infact, let (V) (w,)=
max (V) (). Then by (5),, we have f (x,)=0 so that AWV f)(x)=
h(x0)< max h(x). Similarly we obtain (A Vf)(®)= min A(x). Thus we

TE€EQ
have proved 3).

We finally prove that V= s-lifn J.ffor fe D(V). Wehave, by (18),

wlo

(21) V=LV +J, [
We also have, by J,=(O\I—A)",
(22) (I )f=—J Af for fe D(A).

On the other hand, the range R(A)=D(V)2C,(£) is dense in X and
the range R(J,)=D(A)=R(V) is dense in X. Thus we see that (22)
implies that R(I—\J,)*=X. Hence, by (12), s -1}\1%1 A, f=0 for every
fe X. Therefore, by (21), we obtain Vf=s-lim J, f for every fe D(V).



