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1. Introduction. Let 9 be a set, and denote by X a Banach
space of real-valued bounded functions f(x) defined on 2 and normed by
f I- sup If(x) I. We assume that X is closed with respect to the lattice

operations (fAg)(x)- min (f(x), g(x)) and (fVg)(x)- max (f(x), g(x)).
For any linear subspace Y of X, we shall denote by Y/ the totality
of functions fe Y which are >=0 on tg, in symbol f>=0. We also
use the notation f+=fV 0 and f-- (-f) V 0.

We denote by L(X, X) the totality of continuous linear operators
defined on X into X. A family {Jx; >0} of operators e L(X, X) is
called a pseudo-resolvent if it satisfies the resolvent equation
1 Jx-J,= (l-)JxJ,.

Suggested by the case of the resolvent Jx= ()I-A)- of the infinitesimal
generator A of a semi-group {Tt; t=>0} of operators e L(X, X) of class
(C0)) mapping X+ into X+, we shall assume conditions:
(2) Jx is positive, in symbol Jx>__0, that is, f>=0 implies Jxf>=O

for all > 0.
(3) ]]Jx]]-<_l for all )>0.
Then, an element fe X is called supezharmonic (or subharmonic) if
Jxff (or Jxf>__f) for all >0, and an element fe X is called a
potential if there exists a g e X such that f-s-lim Jxg, where s-lira

denotes the strong limit in X, i.e., uniform limit on 9.
We shall be concerned with the potential opera,or V defined by

4 Vf- s-lim Jxf (when s-lim Jf+ and s-lim Jxf- both exist).
;0 hi0 x$0

Our main results are stated in the following two theorems.
Theorem 1. Let J satisfy (1) and (2). Then V>__0 and we have:

(5) Let feX+,geX+ and >0, and define Vx-V+-L If
(Vxf)(x) <- (Vg)(x) on the support (f), we must have Vxf<= Vg.

(he principle of ma]oraion).
Theorem 2. Let Jx satisfy (1), (2) and (3). If the range R(V)

of the potential operator V is dense in X, then R(Vx) is also dense
in X and the null space N(V)-{f; Vf--O} consists of the zero vector
only. Moreover, Jx is the resolvent of a linear operator A with dense
domain D(A) defined through the Poisson equation A Vf---f.

Remark. Two special cases of X are important for concrete
1) See, e.g., K. Yosida: Functional Analysis, Springer, to appear soon.
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application. The first case: t2 is a locally compact Hausdorff space
and X is the totality of real-valued continuous functions defined on
/2 which $end o zero a$ infinity; X is the closure with respect to
the norm Ilfll-sup If(x)I of the space C0(t2)of continuous functions

with compact support defined on/2. The second case: 12 is a a-additive
iamily of subsets of a set, and X is the Banach space of a-additive
measures defined on t9 and normed by the total variation of the
measure. The first case was discussed by G. A. Hunt in the view
to characterize the operator defined through

where {Tt; t0} is the semi-group associated with a Markov process
in a locally compact space 9. In the first case, we can prove, under
condition(5), an analogue of Hunt’s research"

Theorem :. If V0 and if R(V) is dense in X, we have:
5 ) Let fe C0(2)+ and g e X+, and let (Vf)(x) _<_. (Vg)(x) on the support

(f). Then Vf<= Vg.
If furthermore, V(C0(2)+) is dense in X/, then we obtain"
(5) Let fe C0(tg) and let (Vf)(Xo)-max(Vf)(x). Then f(Xo)>-O.

Theorem 4. Let V be a closed linear operator whose domain
D(V) and range R(V) both belong to X=C0(9) in such a way that
V satisfies (5) and further conditions"
(6) V>__0,
(7) Vf is defined if and only if Vf+ and Vf- are both defined.
8 N( V)- {0).
9 Co(2)-D(V).

(10) V(C0(t2)+) is dense in X+ and Vx(Co([2))is dense in X for
Then, for the operator A defined through the Poisson equation AVf-
-f and for >0, the resolvent Jx-(I-A)- exists as an operator
e L(X, X) such that (1), (2), (3) and (4) hold.

2. Proof of the theorems. We shall rely upon a lemma which
is a special case of the so-called Abelian ergodic theorem.3

Lemma. Under condition (1), we have
(11) JxJ, J,Jx
Under conditions (1) and (3), we have:
(12) R(Jx) is independent of ;, and its closure R(Jx) coincides with

f; s-lim :Jxf=f}.

2) Markoff processes and potentials, I, II and III, Illinois J. of Math., 1, 44-93,
316-469 (1957) and 2, 151-213 (1958). Further researches are given, e.g., in Sminaire
du Potentiels, dirigs par M. Brelot, G. Choquet et J. Deny, Fac. Sci. Paris (1950-).

3) K. Yosida: Ergodic theorems for pseudo-resolvents. Proc. Japan Acad., 37,
422-423 (1961). Cf. E. Hille-R. S. Phillips, Functional Analysis and Semi-groups,
Providence (1957).
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(12)’ R (I--Jx) is independent of and its closure R(I-J,) coincides
with {f; s-lira :Jxf= 0}.

0

Proof. See the reference cited in the footnotes 1) and 3).
Proof of Theorem 1. The operator V defined through (4) satisfies

(13) Vf JxVf+ Jxf VJxf/Jxf for fe D(Y),
because of (1), (4)and (11). Thus, if f0 belongs to the domain
D(V), then Vf is superharmonic by JfO.

Next we show that, if fe X+ be such that pJ,ff for all
with 0< p , then
(14) lim (J,(I-Jx)f)(x)-(Jxf)(x)-A(x), where

0

A(x)- lim (gJ,f)(x).
To prove this, we first observe that (I-J)f is 0. We have, by (1),

f  J.f J )f- zJ f+ J f.- - -We also have, by (1),
(I+ (-)Jx)(I- pJ)f (I-J)

Hence, if 0<, the condition J,ff (for 0<) implies that
0 JfJxfl Thus lira (Jf)(x)=A(x) exists and so we obtain (14).

0
We are now able to prove (5). Put v(x)- min ((Vxf)(x), (Vg)(x)).

Then v0 by f0, g0 and V0, and we have
(15) Jvv for
We have only to show that JVf Vxfi But we obtain

Jf:JVf+Jf+ (--1)Jff vf+

Vf+(-l)Jf Vf Vxf.

Thus w-(I-Jx)v0 and we have, by (14),
(16) lim (Jw)()-(Jv)()-v(), where v()- lim (J,v)()O.

0
Hence, by (13) and the positivity of J,, we obtain
(17) lim (J,w)() (Jxv)(x)- v(x)--w(x)

o
(vf)(x)

We have (Vxf)()-v(x) on the support (f) by hypothesis. Hence, by
(17), f(x)w(x) on the support (f), and so, by f0 and w0, we
must havefw. Therefore, by (17) and the positivity of J, we obtain
(Vxf)() lim (Jw)()+-w() v() (Vg)(), that is, Vxf Vg.

o
Proof of Theorem 2. By (13), we see that R(V)-X implies

R(Vx) X and R(Jx) X. R(Jx) X implies, by (12), that N(Jx)-
4) Originally, the author tacitly concluded that s-lim 2Jf=fi exists. This was

$0
pointed out by Mr. D. Fujiwara.
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{0} which, in turn, implies the existence of the inverse J[. By (1),
it is easy to see that (I-J;) is independent of so that J--(;I-A)-where A=;I- J;. Moreover, D(A)- R(Jx) R(V) is dense in X. By
(13), Vf=O implies Jxf=O so that N(V)-{0} if R(V)-X. Finally,
we have, by (13) and J-(I-A)-,

(I- A) Vf Vf+f, that is, n Vf f
Proof ot Theorem :o We first prove (5). Since R(V) is dense

in X, there exists an h0 such that f(x)-<(Vh)(x) on the support
(f) which is compact by hypothesis. For any e>0, take )>0 such
that ;-< e. Then (Vxf)(x) <-__ (Vg)(x)+ -f(x) <= V(g + eh))(x) on the
support (f). Hence, by (5), Vf<= Vf<= V(g+ h). Letting e 0, we
obtain Vf<=_ Vg.

Proof of (5).. Since Vfe X= Co(), we must have (Vf)(x0) >-_ O.
Let us tentatively assume that (Vf)(Xo)>O. Then we can show that
f(y) >- 0 at some point y e E= {x; (Vf)(x0)- Vf)(x)}. Since V_-> 0, the
condition (Vf)(Xo)>O implies that f+ is not equal to zero. For any
point ye Esupport (f+), we have surely f(y)>__O. I Esupport (f/)
is void, then there exists an e>0 such that (Vf)(Xo)>e and that
(Vf)(x) <=- (Vf)(Xo)-e on the support (f+). Since V(C0(9)+) is dense
in X+ by hypothesis, there exists an h>__0 such that (Vh)(xo)-
(Vf)(Xo)- and (Vh)(x)>-_(Vf)(Xo)-e on the support(f+). Hence
(Vf+)(x)<=(Vf-)(x)+(Vh)(x) on the support (f+), and so, by (5), we
must have Vf<__Vh. Thus we have a contradiction (Vf)(Xo)<=
(Vh)(Xo)-(Vf)(Xo)-e. We now turn to the general case (Vf)(Xo)>-O,
and take any compact set E of /2 containing x0 as an interior point.
Since V(C0(D)+) is dense in X+, there exists a g e C0(9)+ such that
(Vg)(Xo) max (Vg)(x). Then, for any e >0, the function V(f+ eg))(x)

D--E
takes its positive maximum at a point e E and not at points outside
E. Hence, as proved above, there must exist at least one point y e E
such that f(y) / eg(y) >_0. Therefore, we obtain f(Xo) >-__0 by letting

Proof of Theorem 4. By (8), we can define the operator A
through AVf f Thus
(18) (I-A) Vf Vf+f
We first prove that the condition Vf=O with 0 implies that

f= 0. For, then (Vf+)(x) (Vf-)(x) on the support (f+) and so
Vf+ Vf+ <= Vf- by (5). Similarly we obtain Vf+ >= Vf and henee
Vf-O so that f-0 by (8).

Therefore the inverse Jx-(I-A)- exists as an operator whieh
maps (Vf+f) onto Vf. We can prove that
(19) J-(I- A)- is positive.
Let h >__ 0 be D(J). Then Jh=g- Vf with f D(V) and
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(20) h-- (I-- A)Jxh-g Ag- Vf/f
Since h>=0, we have (Vf+)(c)(Vf-1)(c)-f-()on the support (f-)
and so, by (5), Vf+>=Vf-+f-, that is, Jxh-Vf>__-f->__O.

Since A is a closed linear operator with V, we see that D(Jx)
Vx(Co(2))-X implies, by V_>0, that >0 is in the resolvent set of
A and J-- (I- A)- e L(X, X).

We next show that (3) is true. Let h e Vx(Co(9)). Then, by (20),
we can show that min h(x) <= ( Vf)(x) <-_ max h(x). In fact, let ( Vf)(xo)-
max(Vf)(). Then, by (5), we have f(0)_>_0 so that (Vf)(x)
h(xo) <= max h(x). Similarly we obtain () Vf)() >__ rain h(). Thus we

have proved (3).
We finally prove that Vf---s-lim Jffor fe D(V). We have, by (18),

0

(21) Vf--JVf+ Jxf.
We also have, by J-(I-A)-,
(22) (I-J)f-- -JxAf for fe D(A).
On the other hand, the range R(A)-D(V)Co(9) is dense in X and
the range R(J)-D(A)-R(V) is dense in X. Thus we see that (22)
implies that R(I-Jx)= X. Hence, by (12)’, s-lim Jxf- 0 for every

,$0

fe X. Therefore, by (21), we obtain Vf--s-lim Jxf for every fe D(V).


