36. On Closures of Vector Subspaces. II

By Shouro KASAHARA Kobe University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1965)

5. We shall prove in this section the following theorem.¹⁾

THEOREM 6. Let M be an infinite dimensional vector subspace of a vector space E, and let τ_0 be a locally convex Hausdorff topology on M. Let us denote by M' the dual of M for the topology τ_0 , and by codim (M') the codimension of M' in M*.

1° If $\operatorname{codim}(M)$ is infinite, then $\operatorname{codim}(M) \leq 2^{\operatorname{codim}(M')}$ implies that for every projection p of E onto M, there exists a locally convex Hausdorff topology τ on E such that M is dense in E for the topology τ and p is continuous for the topologies τ and τ_0 .

If $\operatorname{codim}(M)$ is finite, then $\operatorname{codim}(M) \leq \operatorname{codim}(M')$ implies the same conclusion.

Conversely

2° If there exists a locally convex Hausdorff topology τ on E such that M is dense in E for the topology τ and a projection p of E onto M is continuous for the topologies τ and τ_0 , then either $\operatorname{codim}(M) \leq 2^{\operatorname{codim}(M')}$ or $\operatorname{codim}(M) \leq \operatorname{codim}(M')$ according as $\operatorname{codim}(M)$ is infinite or finite.

Proof of 1°. Suppose first that the dimension of the vector subspace $N = p^{-1}(0)$ is infinite. The inequality $\dim(N) \leq 2^{\operatorname{codim}(M')}$ shows that there exists a vector subspace N' of N^* such that $\dim(N') \leq \operatorname{codim}(M')$ and the dual system (N, N') is separated.²⁾ Let $B_{N'}$ be a base of N'; then, since $\dim(N') \leq \operatorname{codim}(M')$, we can find a linearly independent subset B of an algebraic supplement of M' in M^* with cardinal number $\dim(N')$. Let φ be a one-to-one mapping of $B_{N'}$ onto B. We define, for each $y' \in B_{N'}$, a linear functional \overline{y}' on E by setting

$$\langle x, \bar{y}'
angle = egin{cases} \langle x, arphi(y')
angle & ext{for } x \in M, \ \langle x, y'
angle & ext{for } x \in N. \end{cases}$$

¹⁾ This is a generalization of Theorem 1 of S. Kasahara: Locally convex metrizable topologies which make a given vector subspace dense. Proc. Japan Acad., 40, 718-722 (1964); to this paper, corrections should be made as follows: Page 718, 'arized' should read 'arisen', and page 719, 'powder' should read 'power'.

²⁾ See Lemma 4 of S. Kasahara: On closures of vector subspaces, I. Proc. Japan Acad., 40, 723-727 (1964); the preceding sentence of Lemma 4 which begins with the word 'Consequently' should read as follows: Consequently, if the dual system (E, E') is separated, we have dim $(E) \leq \cdots$.

Then the weakest topology τ on E which makes the mapping p and linear functionals $\overline{y}'(y' \in B_{N'})$ continuous possesses the required property. To see this, it will suffice to prove that τ is a Hausdorff topology which makes M dense in E. It is easy to see that the mapping $x' \rightarrow x' \circ p$ of M' into E^* is continuous for the weak topologies $\sigma(M', M)$ and $\sigma(E^*, E)$. Therefore, if A' is a $\sigma(M', M)$ -compact subset of M', then $A' \circ p = \{x' \circ p; x' \in A'\}$ is a $\sigma(E^*, E)$ -compact subset of E^* . Consequently, for every closed convex and circled neighborhood U of $0 \in M$ for the topology τ_0 , we have

 $(p^{-1}(U))^{\circ} = (p^{-1}(U^{\circ \circ}))^{\circ} = (U^{\circ} \circ p)^{\circ \circ} = U^{\circ} \circ p.$

It follows that the dual E' of E for the topology τ is the vector subspace of E^* spanned by the set $\{x' \circ p; x' \in M'\} \smile \{\overline{y}'; y' \in B_{N'}\}$. Now to prove that the topology τ is Hausdorff, it will be sufficient to show that there exists, for each non-zero element x of N, an element $x' \in E'$ such that $\langle x, x' \rangle \neq 0$. But this is an immediate consequence of the separatedness of the dual system (N, N'): in fact, we can find an element $y' \in B_{N'}$ for which we have $0 \neq \langle x, y' \rangle = \langle x, \overline{y'} \rangle$. It remains only to prove that the vector subspace M is dense in Efor the topology τ . Let x'_0 be an element of E' which vanishes on M. Then we can find $x' \in M'$ and $y'_1, \dots, y'_n \in B_{N'}$ such that $x'_0 =$ $x' \circ p + \sum_{i=1}^{n} \lambda_i \overline{y}'_i$, and hence we have, for every $x \in M$,

$$0 = \langle x, x_0' \rangle = \langle x, x' \circ p + \sum_{i=1}^n \lambda_i \overline{y}_i' \rangle = \langle x, x' + \sum_{i=1}^n \lambda_i \varphi(y_i') \rangle.$$

In other words, the linear functional $x' + \sum_{i=1}^{n} \lambda_i \varphi(y'_i)$ on M is the zero element of M^* , and so we have x'=0 and $\lambda_1 = \cdots = \lambda_n = 0$, since the set $\{x', \varphi(y'_1), \cdots, \varphi(y'_n)\}$ is linearly independent. Consequently we have $M^{\circ} \frown E' = \{0\}$, which shows that M is dense in E for the topology τ .

Suppose now that the dimension of the vector subspace N is finite. Then we have $\dim(N^*) = \dim(N) \leq \operatorname{codim}(M')$, and hence it suffices to take $N' = N^*$ in the proof of the case where $\dim(N)$ is infinite.

Proof of 2°. Suppose that the dimension of the vector subspace $N=p^{-1}(0)$ is infinite. Let E' be the dual of E for the topology τ , and let $x' \in E'$, $A' \subseteq E'$. We denote by $x'|_{\mathfrak{M}}$ the restriction of x' to M, and by $A'|_{\mathfrak{M}}$ the set of all restrictions $x'|_{\mathfrak{M}}$ of $x' \in A'$ to M.

Let N' be an algebraic supplement of N° in E'. We shall show that $M' \frown (N'|_{\mathfrak{M}}) = \{0\}$. Let $x' \in M' \frown (N'|_{\mathfrak{M}})$. Then since $x' \in M'$, we can write $x' = (x' \circ p)|_{\mathfrak{M}}$. On the other hand, since $x' \in N'|_{\mathfrak{M}}$, we have $x' = x'_1|_{\mathfrak{M}}$ for some $x'_1 \in N'$. Hence we have $x' \circ p = x'_1$, because the vector subspace M is dense in E. But then, since $x' \circ p \in N^\circ$ and $x'_1 \in N'$, it follows that $x' \circ p = 0$, and so x' = 0. Thus $M' \frown (N'|_{\mathfrak{M}}) =$ No. 2]

 $\{0\}$. Consequently we have

$$\operatorname{codim}(M') \ge \dim(N'|_{M}). \tag{1}$$

Now it is clear that the mapping $y' \rightarrow y'|_{\mathcal{M}}$ of N' onto N'|_{\mathcal{M}} is linear. Moreover, this mapping is one-to-one, since M is dense in E. Therefore we have

$$\dim (N'|_{\mathfrak{M}}) = \dim (N'). \tag{2}$$

Since the dual system (E, E') is separated, for every non-zero element x of N, we can find an $x' \in E'$ such that $\langle x, x' \rangle \neq 0$; but then we can write x'=z'+y', where $z' \in N^{\circ}$ and $y' \in N'$, and hence we have $\langle x, y' \rangle = \langle x, z'+y' \rangle \neq 0$, which shows that the dual system (N, N') is separated. Therefore we have

$$\dim(N) \leq 2^{\dim(N')}.$$
 (3)

Thus, combining (1), (2), and (3), we have the desired conclusion.

Now suppose that the dimension of N is finite. Then in the proof of the case where dim(N) is infinite, we have

$$\dim(N') = \dim(N) \tag{4}$$

instead of the inequality (3). Thus we have $\dim(N) \leq \operatorname{codim}(M')$ from (1), (2), and (4).

REMARK. More generally, theorem 6 is valid for linear mappings u of E onto M satisfying the following condition:

*)
$$u(M) = M \text{ and } u^{-1}(0) \frown M = \{0\}.$$

In fact, for every linear mapping u of E into M satisfying the condition (*), we have $u^{-1}(0) + M = E$; let p be the projection of E onto M such that $p^{-1}(0) = u^{-1}(0)$; then we have $(u \mid_M) \circ p = u$, where $u \mid_M$ denotes the restriction of u to M. Let τ_1 be the weakest topology on M which makes $u \mid_M$ continuous as a mapping onto M with the topology τ_0 , and let τ be a locally convex topology on E. Then since $u = (u \mid_M) \circ p$, the mapping u is continuous for the topologies τ and τ_0 if and only if p is continuous for the topologies τ and τ_1 . Furthermore, the dual of M for the topology τ_0 . Therefore, the above mentioned statement follows from Theorem 6.

As a corollary of Theorem 6, we have the following

THEOREM 5'. Let M be a vector subspace of an infinite dimensional vector space E. If dim $(E) \leq 2^{\alpha}$, where $\alpha = 2^{\dim(M)}$, then for every algebraic supplement N of M in E, there exists a locally convex Hausdorff topology on E which makes M dense in E and N closed.

Proof. Let B be a base of M. For each $x \in B$, we define a linear functional x' on M by setting, for every $y \in B$,

$$\langle y, x' \rangle = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$$

Denote by M' the vector subspace of M^* spanned by the set $\{x'; x \in B\}$. We have then $\dim(M') = \dim(M) < 2^{\dim(M)} = \dim(M^*)$. Therefore $\operatorname{codim}(M') = \dim(M^*)$, and hence we have by the assumption $\operatorname{codim}(M) \leq \dim(E) \leq 2^a = 2^{\dim(M^*)} = 2^{\operatorname{codim}(M')}$. Since $\operatorname{codim}(M')$ is infinite, applying Theorem 6 for the weak topology $\sigma(M, M')$, we have the conclusion.

The following corollary is a consequence of Theorem 3.

COROLLARY. Let M be an infinite dimensional vector subspace of a vector space E. Then for every vector subspace $F \supseteq M$ of dimension $\leq 2^{\alpha}$, where $\alpha = 2^{\dim(M)}$, and for every algebraic supplement N of M in F, there exists a locally convex Hausdorff topology on E for which we have $\overline{M} = F$ and $\overline{N} = N$.