47. On the Convergence Theorem for Star-shaped Sets in E^{n}

By Tunehisa Hirose
Department of Mathematics, Defense Academy, Yokosuka, Japan
(Comm. by Zyoiti Suetuna, m.J.A., March 12, 1965)

Introduction. It is well known, as Blaschke convergence theorem, that a uniformly bounded infinite collection of closed convex sets in a finite dimensional Minkowski space contains a sequence which converges to a non-empty compact convex set. The convergence problem for star-shaped sets seems open up to-day (cf. [1]).

In this paper, modifying F. A. Valentine's proof of the Blaschke convergence theorem in [1], we prove a convergence theorem for star-shaped sets in the n-dimensional euclidean space E^{n}. In the case of E^{3}, Z. A. Melzak's result [2] is known.

1. Notations and lemmas. In the following, we consider sets in the n-dimensional euclidean space E^{n} only.

Let S be a star-shaped set relative to a point p. Then the closure of S, denoted by $c l S$, is a star-shaped set relative to the point p. If $\left\{S^{\alpha} ; \alpha \in\right.$ index set $\}$ is a finite or an infinite collection of starshaped sets relative to a point p, then $\bigcup_{\alpha} S^{\alpha}$ and $\bigcap_{\alpha} S^{\alpha}$ are star-shaped relative to the point p.

An ε-parallel set A_{ε} of a set A is defined by

$$
A_{\varepsilon} \equiv \bigcup_{a \in A} K(a, \varepsilon),(0 \leqq \varepsilon, \varepsilon \in \text { reals }),
$$

where $K(a, \varepsilon)$ denotes the solid sphere with center a and radius ε. The distance between the two points x and y is denoted by $d(x, y)$.

Lemma 1. $\left(A_{\rho}\right)_{\sigma} \subset A_{\rho+\sigma}$.
Proof. Let x be a point in $\left(A_{\rho}\right)_{\sigma}$. Then there is a point $y \in A_{\rho}$ such that $d(x, y) \leqq \sigma$. Similarly there is a point $z \in A$ such that $d(y, z) \leqq \rho$. Hence we have

$$
d(x, z) \leqq d(x, y)+d(y, z)=\sigma+\rho .
$$

Therefore x is a point of $A_{\rho+\sigma}$.
The distance $d(A, B)$ between the two sets A and B is defined by

$$
d(A, B)=\inf _{\substack{A \subset B_{\rho} \\ B \subset A_{\rho}}} \rho .
$$

If A and B degenerate to two points x and y, the distance function coincides with the ordinary distance of E^{n}.

Lemma 2. A collection of compact sub-sets becomes a metric space with the metric defined above.

Proof. i) $d(A, A)=0$,
ii) $d(A, B)=d(B, A)$,
and iii) $d(A, B)>0$, if $A \neq B$
are trivial consequences of the definition and the compactness of the sets A and B. To prove

$$
\text { iv) } d(A, C) \leqq d(A, B)+d(B, C)
$$

let $d(A, B)=\rho, d(B, C)=\sigma$ and $\rho+\sigma=\tau$. Then $B \subset A_{\rho}$, and by lemma 1 , $B_{\sigma} \subset\left(A_{\rho}\right)_{\sigma} \subset A_{\tau}$. Since $C \subset B_{\sigma}$, we have $C \subset A_{\tau}$. Similarly we have $A \subset C_{\tau}$. Hence $d(A, C) \leqq \tau=d(A, B)+d(B, C)$.

A family of sets $\mathfrak{M}=\left\{A^{\alpha} ; \alpha \in\right.$ index set $\}$ is uniformly bounded if there exists a solid sphere $K(O, R)$ with center at the origin and with radius $R(0 \leqq R<\infty)$ which contains the entire sets of \mathfrak{M}.

Given a set A and a point p, the set

$$
{ }_{p} A \equiv\left\{\left.x\right|^{\exists} y \in A, x=\beta p+\gamma y \text { for } \beta \geqq 0, \gamma \geqq 0 \text { and } \beta+\gamma=1\right\}
$$

is called the star extension of a set A relative to a point p. It is easily seen that, if a set A is compact then ${ }_{p} A$ is also compact.

Lemma 3. If a set A is star-shaped relative to a point p, and q be a point such that $d(p, q)<\varepsilon$, then $d\left(A,{ }_{q} A\right)<\varepsilon$.

Proof. By the definition of star extension, $A \subset{ }_{q} A \subset{ }_{q} A_{5}$. If $x \in{ }_{q} A$, then there is a point $a \in A$ such that $x=\beta q+\gamma a, \beta \geqq 0, \gamma \geqq 0$ and $\beta+\gamma=1$. Let $y=\beta p+\gamma a$. Then $y \in A$, for A is star-shaped relative to p; and

$$
\begin{gathered}
d(x, y)=\|x-y\|=\|\beta q+\gamma a-\| \beta p-\gamma a \| \\
=\beta\|q-p\|<\beta \cdot \varepsilon \leqq \varepsilon .
\end{gathered}
$$

Hence $d\left(A,{ }_{q} A\right)<\varepsilon$.
A sequence of sets $\left\{A^{i} ; i=1,2, \cdots\right\}$ is said to converge to a set A if $\lim _{i \rightarrow \infty} d\left(A^{i}, A\right)=0$.
2. Convergence Theorem.

Theorem. Let $\mathfrak{M}=\left\{S^{\alpha} ; \alpha \in\right.$ index set $\}$ be a uniformly bounded infinite collection of compact star-shaped sets in E^{n}. Then \mathfrak{M} contains a sequence which converges to a non-empty compact starshaped set.

Proof. By the same reasoning of [1] (Th. 3.8), we can prove that there exists a sequence $\left\{S^{n} ; n=1,2, \cdots\right\}$ such that for any $\varepsilon>0$ there is a number N and for any $m>N$ and $n>N$, we have $d\left(S^{m}, S^{n}\right)<\varepsilon$.

Now each S^{n} is a star-shaped set, so let p^{n} be a point relative to which S^{n} is star-shaped. Since $\left\{p^{n} ; n=1,2, \cdots\right\}$ is contained in the solid sphere $K(O, R)$, which also contains the entire sets of \mathfrak{M}, the infinite sequence $\left\{p^{n}\right\}$ has a convergent sub-sequence $\left\{p^{n}\right\}$. Let $\lim _{i \rightarrow \infty} p^{n_{i}}=p$.

Let us now denote n_{i} as n. Then we can say by lemma 3 that
there exists a sequence $\left\{\left(S^{n}, p^{n}\right) ; n=1,2, \cdots\right\}$, such that for any $\varepsilon>0$ we have

$$
\begin{equation*}
d\left(p^{n}, p\right)<\varepsilon \text { and } d\left(S^{m}, S^{n}\right)<\varepsilon \text { for any } m>N, n>N \tag{1}
\end{equation*}
$$

Let C^{n} be the star extension of S^{n} relative to the point p, then by Lemma 2, Lemma 3 and (1) we have,

$$
\begin{equation*}
d\left(C^{n}, S^{n}\right)<\varepsilon, \text { for } n>N, \tag{2}
\end{equation*}
$$

$$
d\left(C^{m}, C^{n}\right) \leqq d\left(C^{m}, S^{m}\right)+d\left(S^{m}, S^{n}\right)+d\left(S^{n}, C^{n}\right)<3 \varepsilon
$$

$$
\begin{equation*}
\text { for } m>N, n>N \tag{3}
\end{equation*}
$$

Let $B^{n} \equiv \operatorname{cl}\left(C^{n} \cup C^{n+1} \cup \cdots\right) \subset K(O, R)$
and

$$
\begin{equation*}
S \equiv \bigcap_{n=1}^{\infty} B^{n} . \tag{4}
\end{equation*}
$$

Since $\left(C^{n} \cup C^{n+1} \cup \cdots\right)$ is star-shaped relative to the point p, B^{n} is compact and star-shaped relative to the point p. Moreover $B^{n+1} \subset$ B^{n}. Therefore S is a non-empty compact and star-shaped set relative to the point p.

The convergence of $\left\{S^{n}\right\}$ to the limit S is proved similar to [1], on account of (1), (3), and (4). Let S_{ε} and C_{ε}^{n} be the ε-parallel sets of S and of C^{n} respectively (where $d\left(S_{\varepsilon}, S\right)=\varepsilon$ and $d\left(C_{s}^{n}, C^{n}\right)=\varepsilon$). Given any $\varepsilon>0$, there is a number N^{\prime} such that for any $n>N^{\prime}$ we have $B^{n} \subset S_{\varepsilon}$. For if not so, $B^{n} \cap \partial\left(S_{\varepsilon}\right) \neq \phi^{*)}$ for infinitely many $n>$ N^{\prime}, and B^{n} 's are compact and $B^{n+1} \subset B^{n}$. Therefore we have $S \cap$ $\partial\left(S_{\varepsilon}\right) \neq \phi$, which is a contradiction. Hence

$$
\begin{equation*}
C^{n} \subset B^{n} \subset S_{\varepsilon} \subset S_{3 c} \text { for } n>N^{\prime} \tag{5}
\end{equation*}
$$

The condition (3) implies $C^{m} \subset C_{3 \varepsilon}^{n}$ for $m>N, n>N$, and by (3) and definition of B^{n} we have $B^{n} \subset C_{3 s}^{n}$ for $n>N$. Hence

$$
\begin{equation*}
S \subset B^{n} \subset C_{3}^{n} \text { for } n>N \tag{6}
\end{equation*}
$$

Therefore by (5) and (6)

$$
\begin{equation*}
d\left(S, C^{n}\right)<3 \varepsilon \text { for } n>\max \left(N, N^{\prime}\right) \tag{7}
\end{equation*}
$$

By Lemma 2, (2) and (7), we have

$$
d\left(S^{n}, S\right) \leqq d\left(S^{n}, C^{n}\right)+d\left(S, C^{n}\right)<4 \varepsilon .
$$

Hence we have proved that $\lim _{n \rightarrow \infty} S^{n}=S$. This completes the proof.

References

[1] F. A. Valentine: Convex sets. Mcgraw-Hill (1964).
[2] Z. A. Melzak: A class of star-shaped bodies. Can. Math. Bull., 2, 175-180 (1959).

[^0]
[^0]: *) ∂ denotes "the boundary of". ϕ denotes the empty set.

