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1. In 1943, d. von Neumann stated in his monumental paper
[3; Lemma 5.2.3 that the crossed product of an abelian von Neumann
algebra with a faithful normal trace by an ergodic abelian group of
trace preserving automorphisms is a continuous hyperfinite factor.
He wrote that the lemma required some rather deep analysis on the
.decomposition of measure preserving transformations and the proof
would be published in a separate paper. Since then no proof is
avairable to us.

Twenty years after, H. A. Dye published an interesting paper [2J
on a deep analysis of measure preserving transformations and estab-
lished a theorem [2; Cor. 6.i which implies lhe above cited lemma
of von Neumann. It seems that Dye’s success is an important advance
in the recent theory of von Neumann algebras.

However, a slight defect is admitted in a part of Dye’s proof.
His proof depends principally upon [2; Lemma 6.1: Let / be a
regular maximal abelian self-adjoint subalgebra of a yon Neumann
algebra of finite type with the faithful normal trace, and let C
be an intermediate von Neumann subalgebra between Y/ and . If
U is a unitary operator of ’which preserves // in the sense that
UU*, then the conditional expectation U=E[UIC of U
conditioned by C in the sense of H. Umegaki [4 is a partial isometry
of . To prove this, he stated at [2; (6.4) that
( UAU*= VAV*,
for all A e /, where V is a partial isometry belonging to the polar
decomposition of-U, that is,

U =E[UI V[U
Unfortunately, (.) is not true in general.

But, the essential part of the proof of Dye will be salvaged by
the following

THEOREM. If is a maximal abelian subalgebra of a yon

Neumann algebra with a faithful finite normal trace, if C is
an intermediate yon Neumann subalgebra between and , and
if U is a partial isometry of preserving . in the sense that
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UU* and U*U,
then the conditional expectation U-E U conditioned by is
a partial isometry of preserving .

2. According to the investigation [4 of Umegaki, the conditional
expectation A-A is a positive linear adjoint preserving mapping
which satisfies
1 (BC)-BC, for B e . and C e ’.

By (1) and the fact that /C, we have
2 UA-(UA)-(UU* UA)-(UAU* U)- UAU*U,

for all Ae//. Let S be the absolute of U, i.e., S-U*U1/2.
By (2)and U*-U*, we have SA-AS for all A e/, and so
Se / by the maximal abelian character of //. Consequently, we
have S e /. Let
(3) U-VS
be the polar decomposition of U, Substitute VS for U in (2), we
have UAU* VS- VSA. Then

AU* VS=AU*UUVS- U* UAU*VS- U* VSA,
for all A e /. Therefore U* VS belongs to / since is maximally
abelian, and so by (3)

u* vz=(v* vz) -(v * v* v -s
Hence,
S-SV* UU* VS- U*UU* VS=(U*UU*)U= U*U-S’,

which shows that S is a projection. Therefore S is a projection since
S is non-negative. Because V* V is the support of S, we have S--
V*V and

U- VS= VV*V- V.
This proves the first half of the theorem.

3. Let us now return to the lemma of Dye. By the theorem,
U is a partial isometry when U is unitary. Let us put E= V* V
and F=VV*. If we substitute V for U in (2), the,n we have
VA- UAU* V, whence we have

VAV*- UAU* VV*- UAU*F.
Therefore, (.) must be replaced by
(**) (UAU*)F= VA V*,
for all A e /. Since A---.UAU* is an automorphism of / and F is
a projection of /, we have

V,_]t V* ,tF ,_]l.

By the same argument applied to U*, we have also V*,_]tV,.l.
Therefore the conditional expectatioa V of the given unitary U
conditioned by an intermediate subalgebra C preserves / and the
essential part of the lemma of Dye is obtained. The proof of the
second part of the theorem is completely analogous.
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4. Finally, let us observe an another consequence of the theorem.
If .q) is an another intermediate von Neumann subalgebra between
/ and . such that .q)C. Then we have by a property of the
conditional expectation due to Umegaki [5

and E[UI is a partial isometry of .q) by the theorem. Hence we
can conclude, using the definition of martingales introduced by
Umegaki [5 as M-nets, that the family {E[UIF;C} of
partial isometries forms an example of non-commutative simple
martingale which terminates at E U . The character of the
convergence of the martingale is decidable by the theorems of Umegaki
[5; Th. 2 and Th. 3.
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