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1. Introduction. Many kinds of integration of the Perron type
have been given by various authors using various types of generali-
zed derivatives.

The aim of this paper is to introduce axiomatically a generalized
derivative which includes ordinary derivative, approximate derivative
and Cesro derivative, and to build an integral of the Perron type
including ordinary Perron integral, AP-and CP-integral defined by
J. C. Burkill [1, [2J and more generally G. Sunouchi and M. Uta-
gawa’s generalized Perron integral [4, [3.

2. A generalized derivative. Definition 2.1. Let M be a linear
space of measurable functions defined on closed interval [a, b. If
we can assign uniquely the extented real value GDf(x) to any func-
tion f(x)e M and any point x e a, b such that

(i) GDI-O,
(ii) G_D_D f()+g()>-_G_Df(x)+G_D_g(),
(iii) if f() is ordinary differentiable at x then

GD f()/g() =Df(x)-+-G_D_ g(),
(iv) G___D f(x)>__Df()

where Df() means ordinary lower derivate of f at 00.

(v) GD of(o)-o GDf(x) (o>O),
then GDf() is termed generalized lower derivate of f(x) at x.

Throughout this paper we more assume the ollowing property.
(vi) If feM and GDf(x)>=O at each point of a,b then

f() is non-decreasing.
Definition 2.2. If we define GDf(x) by GDf(x)--GD-f(x)

then GDf() is called generalized upper derivate of f(x) at x. If
GDf()-GDf(c) then we say that f(x) has generalized derivative
at and the common value is written by GDf().

Ordinary-, approximate- and Cesro-lower derivate satisfy the
conditions (i)-(vi). The proofs of (vi)for approximate-and Cesro-
derivate were given by G. Sunouchi and M. Utagawa _4.

We can easily prove the following properties.

(1) GDI-O.
(2) GD f()/g()J<=GDf()/GDg().
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(3) If f(z) is ordinary differentiable at z then

GD f(z)/ g(z) D f(z)/GD g(x).
( 4 GDf(x) <= Df(x)

where Df(x) means ordinary upper derivate of f(x).
( 5 GD [af(x) --a G___D f(x) and GD [af(x) -a GDf(x) for a< 0.

al [af(x) -aaDf(x) for a>0.
(6) If C is constant then GD C-O.
7 G__O f(x) GDf(x).

3. Generalized Perron integral. Definition 3.1. A function
U(x) e M is termed upper function of f(x) in a, b if

(i) U(a)-O,
(ii) GD U(x) > at each point x,
(iii) GD U(x)>__f(x) at each point x.
A lower function L(x) is defined correspondingly.
Definition 3.2. If f(x) has upper and lower iunctions in [a, b

and infU(b)-supL(b) finite then f(x) is termed Perron integrable

in the generalized sense. The common value of the two bounds is

called the definite GP-integral of f() and is denoted by (GP) ()d.
Theorem 3.1. Pot any upper and lower functions U(x), L()

f() in [a, b-I, o)()- U()-L(x) is non-decreasing on i-a, b.
Proof. By (ii) of Definition 2.1 and Definition 2.2,

>__ +
=GD U(x)-GD L(x).

It follows from (ii) and (iii) in Definition 3.1 that GDw(x)>__O at
each point x. Hence by axiom (vi), w(x) is non-decreasing oa [a, b.

Since U(b)>__L(b) by Theorem 3.1, it follows from Definition 3.2
that a necessary and sufficient condition that f(x) is GP-integrable
over [a, b is that for a given e>0 there exists an upper function
U(x) and a lower function L(x) such that U(b)L(b)+e.

Theorem :.2. If f(x) is GP-integrable on [a, b then it is also
GP-integrable on every sub-interval [c, d.

Proof. Since f(x) is GP-integrable on [a, b, for a given
there exist upper and lower functions U(x), L(x)such that 0__< U(b)-
L(b) e. If we define the functions U.(x) and L.(x)on [c, d as U.(x)-
U(x)-U(c), [L,(x)-L(x)-L(c) then U.(c)-L.(c)-O, GD U.(x)-
GD_U(x)>- and aD U.(x)f(x)[GDL.(x)< + GDL.(x)_<f(x)
by property (6) and axiom (iv) [by properties (6) and (3). Hence
U.(x)[L.(x) is an upper [lower function of f(x)oa [c,d and
U. (d) L (d) <= U(d)-L(d) . This completes the proof.

Theorem :.:. If f(x) is GP-integrable on [a, b then for a c b
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(GP) f($)dt=(GP) f(t)d+ (GP) f($)d$.

Proof. By Theorem 3.2 f() is GP-integrable on a,c and c,b]
respectively. Let U() be any upper function of f() in a, b.
Then U() is an upper function of f(x) on a, c, and U()-U(c) is
an upper function of f() on c, d. Since U(b)= U(c)+ U(b)- U(v),
we have

(GP) f(t)dt>=(GP) f(t)dt+(GP) f(t)dt.

Similarly using lower functions we obtain

(GP) f(t)dt<-.(GP) f(t)dt+(GP) f(t)dt,

which proves the equality.
Theorem :.. If f and g are GP-integrable on [a, b then

af+/g is also GP-integrable on [a, b and

(GP) [af(t)+ g(t)dt-a(GP) f(t)dt+(GP) g(t)dt.

Proof. Since f(x)[g(x) is GP-integrable there exist U(x) and
L(x)[U(x) and L(x) such that

0 <= U(b)-Ll(b)<:e 0 U(b)-L(b)<e.
(i) First we prove that af is GP-integrable and

(GP)I:f(t)dt-(GP)I:f(t)dt.
For the case a-0 it is clear. If a>0 then we put

U(x)-aU(x) L(x)-aL(x).
It follws from axiom (v) and property (5) that

GD U(x) >= af(x) and GD U(x)
[GD L(x) <__ af(x) and GD L(x)< + .

Hence U[L is an upper [lower function of f in [a, b and
0 <=_ U(b) U(a)=a( U(b)-L(b)) ae

which proves the integrability of af. Since

L(b)<=(GP) f(t)dt U(b)

and >0, we have

L(b)(GP)tlf(t)dt U(b).

On the other hand

L(b)<=(GP) f(t)dt <= U(b),

and therefore

(GP)I:af(t)dt-(GP)I:f(t)dt.

For the case a<0 we can prove the above equality similarly.
(ii) Next we shall show that if f and g are GP-integrable then f+g
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is also so and

(GP) f(t)+g(t)dt-(GP) f(t)dt+(GP) g(t)dt.

Let U(x)-U(x)+ U:(x) and L(x)-L(x)+ L.(x). Then U(x)[L(x)
is an upper .lower function of f+g by axiom (ii) and property (2).
Moreover U(b)-L(b) 2. Hence f+ g is GP-integrable and

(GP) f(t)dt+(GP) g(t)dt-(GP) f(t)+g(t)dt.

The general case can be deduced rom (i) and (ii).
Definition 3.3. Let f(x) be a function GP-integrable on a, b.

We define the indefinite GP-integral of f(x) as

F(x)=(GP) f(t)dt.

Theorem :.5. If f(x) is GP-integrable on [a, b then for any
upper [lower- function U(x) [L(x) the function U(x)-F(x) [F(x)-
L(x) is non-decreasing on [a, b.

Proof. Let a<=xx<=b. Then U.(x)-U(x)-U(x)is an upper
function of f(x) in [x, x:. Hence

V(x) g(x)>-_(Gg)f f(t)dt,
xl

and by Theorem 3.3,
U(x.)- U(x) F(x:)- E(x).

Similarly we can prove the theorem for the unction F(x)-L(x).
Theorem :.6. The unction F(x) is differentiable in the gener-

alized sense at almost all points of [a, b and
GD F(x)=f(x) a.e.

Proof. For a given 0, we can find an upper function U(x)
such that U(x)-F(x)<e. If we put R(x)-U(x)-F(x) then R(x) is
non-decreasing, and therefore it has finite ordinary derivative R’(x)
almost everywhere which is summable on [a, b. Hence

(L)f lR’(x)dx <= R(b)-R(a) U(b) F(b) < e.
We set A()-{x" F(x)<f(x)-z}, and denote by S the set of points
where R’(x) exists and finite. Then we have ]SI-b-a. If x e A(e)
then

_D F(x)<f(x)-<=_G__O U(x)-e,
and therefore
( ) GD U(x)-GD F(x)>.
For any point x e S, by axiom (iii),
2 ) R’(x)-GD U(x)-qD F(x),

and if we put B(e)-{x" R’(x)>e} then it follows from (1)and (2)
that x e A(e). S implies x e B(e), i.e. A(e)-SB(). Hence
( 3 ) n(e)] =< B(e)I.
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But

R’(t)dt<(L)e B(e)I_<_(L)
(

Hence B(e) I<e, and by (3), ]A() ]<e. Since

{x" GD F(w)<f()}- ;U : GDN()<f()-

we have

I{x" GDF(x)<f(x)}l = < -i "
Consequently we obtain GD F(x)>=f(x) a.e.

Using a lower function, it can be proved analogously that
GDF(x)<=f(x) a.e.

Theorem 3.7. If f(z) is ordinary Perron-integrable (P-integrable)
on [a, b] then it is GP-integrable on [a, b and

P I :f(t)dt- (GP I :f(t)dt.

Proof. The upper [lower function M(x) [m(x) of defining the
ordinary Perron integral of f(x) over [a, b has the ollowing pro-
perties; M(a)-m(a)-O, DM(x)>- and D M(x)>=f(x) at each point
of [a, b [Dm(x)< + Dm(x)<=f(x) at each point. Hence, by
axiom (iv) and property (4), any M(x)[m(x) is an upper [lower]
function of f(x) in the GP-sense. From the inequalities

inf U(b) <= inf M(b)- sup re(b) <= sup L(b),

and U(b)>=L(b), we have inf U(b)-sup L(b)-(P) f()dt.

Theorem 3.8. A non-negative function f(x) which is GP-inte-
grable on [a, b is necessarily L-integrable on [a, b] and both inte-
grals over [a, b] coincide each other.

Proof. Let U(x) be any upper function of f(x). Since GD U(x)>=
f(x)>=O it follows from axiom (vi) that U(x) is non-decreasing. Hence
U(x) is ordinary differentiable at almost all points, and therefore
U’(x) is summable. It follows from axiom (iv), properties (4)and
(7) that U’(x)=GDU(x)a.e. Hence U’(x)f(x)O a.e. which im-
plies L-integrability of f(x) on [a, b]. The remain part of the
theorem follows from Theorem 8.7.

Theorem 3.9. Given a non-decreasing sequence f of functions
which are GP-integrable on [a, b] and whose GP-integral over [a, b]
constitute a sequence bounded above, the function f(x)-lim f(x)
is itself GP-integrable on [a, b and we have

(1) (GP)I:f(t)dt-lim (GP)I:f(t)dt.
Proof. Since f,-f is non-negative, it follows from Theorem
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3.8 that f-fi is L-integrable. Hence, by Lebesgue’s theorem, we
have. lim (L) (f,-fi)dt-(L) (f-fi)dt.

Since the sequence of integrals (GP)Ib_f,(t)dt is bounded above, the

sequence of integrals

(L)I:(f-f)dt-(GP)I:(f-f)dt
is also so, and therefore

O<=(L)Ii(f fi)dt<
whieh implies L-integrability of the function f-ft. Hence f-fi is
GP-integrable, and f is also so. The equality (1)follows direetly
from (2) and Theorem 3.4.

If we put the approximate derivates AD and AD in plaee of
the generalized derivates __G___D and GD respeetively in the Definition
3.1 and M is the set of all measurable funetions defined on [a, b3
then we have the approximately continuous Perron integral defined
by G. Sunouehi and M. Utagawa 43 which is more general than
Burkill’s AP-integral [13. Also if, in the Definition 3.1, M is the
set of all special Denjoy integrable functions on [a, b3 and the gener-
alized derivates are replaced by the Cesro derivates then Definition
3.2 defines Sunouehi and Utagawa’s Cesro-Perron integral [-43 which
is known to be equivalent to Burkill’s Cesro-Perron integral [33.
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