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1. Introduction. Let us put

B(z)-I b(z, a),

where b(z, a)-I a/a.(a-z)/(1-z), S=, (1-1 a I)< + . Then we

can find the sequence {r}*) such that

(i.I)
(i) l--r>r>r+ O,
2 E 1/rn’(i--I a, I)< /

For the sake of convenience, we introduce some notations:
( 1 D(e, )-{z; arg (1--ze-) <- <7r/2, z-e I=<cos }.
2 ) D(e, r, r.)-(I z-re <- 1-r) g (I z-r.e >- 1--r),

(O<r<r< I).
3 -- {z; p(z, as)>R}, where p(a, b): The non-Euclidean hyper-

bolic distance between a and b, R-tanh- r (n-l, 2,.--).
(4) S(e)-- , 1/r. (1-- as

an--eiPI <
Then we can state our theorems as follows:
Theorem 1.

(1.2) lira (1--Iz I) log l/B(z) l-O.
ze.q)

As its immediate consequences, we get following:
Corollary 1.

(1.3) lim Iz--e log I1/B(z)1-0 uiformly as z--e inside D(e,
Corollary 2. If there exists no {as} in the sector S"

arg (1-ze-)$(-/2<c<<w/2), then lim Iz-e I.logll/B(z)
uniformly as z--. e inside the subsector of S.

As an interesting application of Corollary 2, we can establish
Theorem 2. If the sequence {as} lies on the chord L arg (1--

ze-)- (I O]<r/2), then L is Julia- line for f(z)-B(z).exp {.
(e+z)/(e-z)} (c> 0).

Under additional conditions, we can prove more precise theorems
than Theorem 1"

Theorem 3. If lim S(e)/e < + then lim B(z) I> 0 as z e
+0

inside ( (D(e, ) U D(e% r, r.)).

Vide lemma 1.
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Theorem 4. If limS(e)/e-0 (a>2), then lim[B(z) 1 as
e+O

z ---, e inside ((e, ) D(e, r, r)).
2. Lemmas. To prove these theorems, we need some lemmas:
Lemma 1. There exists the sequence {r} satisfying (1.1).
Proof. Dini’s theorem ([1 p. 293) states that, if c is a

n=l

convergent series of positive terms, then c/(c+c+...)" converges
n=l

when al, and diverges when al. If we put

c-l-i a ], r- c/c (0<a<l),
k=n

then lemma 1 ollows immediately from Dini’s theorem.
Lemma 2.

(2.) log (-z)/(z-a) <2(- a )(- z })/I z-a
for ]al<, lz]<.

Proof. By the inequality: log (1 + x) x for x0, we have
log](1-z)/(z-a)]-1/2 log {1+ (1-a ])(1-]z )/ z-a }

< /2. (-]a )(-z ])/] z-a ]
<2(-Ia ])(-z )/] z-a ,

which proves Lemma 2.
Lemma . Put p- z--e < e.
1 If z e D(e, ) , lira p/e- < 1, then

(2.2) log liB(z) 4S/(1-).p/+ 4/cos 0. S()/p
for suciently small e.

2 ) If z D(e, , r) , lim ply- 1, then
+0

(2.3) log l/B(z) 2S/(1-).r/(1-r).p/+4(1-r)/r.S()/p
for su#cientty smart .

ProoL I ze, then p(z,a)tanh-r (nl), i.e.
(1-z) Ir (nl), so that
(2.4) z-a /(- z )r (nl).
Hence, by (2.1)
(2.5) s-
Similarly
(2.6)

log (i-z)/(z-aD

lan--ei e
<2S.(1-1zl)/(-p).

Putting z=(1- peO)e, we have easily
(2.7) 1--] z ]=p(2 cos 0-- p).
By (2.5), (2.6), and (2.7)
(2.8) log liB(z) I< 2S/(1- z/). p(2 cos 0-p)/e/ as(e)/p(2 cos #- p)
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for sufficiently small e.
If z e D(e, ) ., then 2 cos -p >_- cos , so that by (2.8)

log /B(z) I<4S/(-).p/+ a/cos .S()/p
zD(ei,8)

or sufficiently small e, which proves (2.2).
I z e D(e, r, r), then by simple computations

p2. r/(1--r) p(2 cos O-- p)
so that by (2.8)

log l/B(z) 2S/(1-).r/(1-r).p/s+4(1-r)/r.S(e)/p
=p<s

zD(ei,rl,r2)

or sufficiently small e, which proves (2.3)
3. Proofs of Theorems 1-4.
Proof of Theorem 1. By (2.1) and (2.4), if z e

(3.1) (1- Izl) log I1/B(z) l<2 (1-1 a. )((1-I z I)/1 z-a. I)
n:l

N being any fixed integer. For any given 0, there exists N()
such that lira. (1-] a ]) <e or NN(e). Hence, by (3.1)

n=+l

(1-- z ]) log liB(z) ]< 2 (1- a )((1-] z )/ z a.
for NN(e), so that

0 lim (1-] z ]) log]liB(z)

Letting e +0, we have lim (1-z) log]l/B(z)]-O, which proves

proves Theorem 1.
Since cos /2(1-] z ])/ z-e’ or ze D(e, ),
0 z-e’].log l/B(z) ]2sec .(1- z ).log]liB(z)]

or z eD(e,). Hence, Corollary 1 follows immediately rom
Theorem 1.

If there exists no {a} in the sector S" -/2<aarg (1-ze-)
<+/2, then by (1.1) (1), the hyperbolic disks" p(z, a)R nN
(N" sufficiently large integer) are not contained in the fixed subsector
of S. Therefore Corollary 2 is an immediate consequence of Corol-
lary 1.

Proof of Theorem 2. Without any loss o generality, we can
assume that -0. By Corollary 2, lim]z--1].log]B(z)]-0 as zl
on the chords" arg (1-z)-, being any positive constant such
that -/2-e<+e+/2. Hence, or any

(3.2) B(z) >exp {--/(1--] z I)}
or arg (1--z)-e, 1--z ]2(), 2() being a constant dependent
upon . By simple computation,
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(1--1 z I)/I 1 z >__l/2-min {cos (v+), cos (--)}--a*/2
for arg (1--z)=O-ee, 1--z I_--</*, so that
(8.8) A((i+z)/(i-z))-(1-1zl)/li-zi>(*/2y.i/(-izl).
By (3.2) and (8.8)

f(z) >exp {i/(i--] z ])- (. (*/2)--)}
or arg (l--z)--v+_, l--z l<=min (/(), *). Taking so small that
o(*/2)2>, w--f(z) tends to as z--* i along the chords" arg (l-z)-
v-ee. Since f(a,)-O n>_l, by Gross-lversen’s theorem ([2 p. 5) the
cluster set oi w--f(z) at z--1 inside the sector S’I arg (1-z)-[e
is the whole w-plane and f(z) takes every finite value, except perhaps
one, infinitely many times in S. Since e is arbitrary, the chord L"
arg (1-z)-v is Julia-line, which proves Theorem 2.

Proof of Theorem 3. If zeD(e,)L, then by Lemma 3
(1), in which we put p-e, z/-0, we have
(3.4) lira log liB(z) ]_<_ 4S+ 4/cos .lim S(e)/e < +

-*+0

as z e inside D(e, ) .
I z e D(e, rl, .), then by lemma 3 (2), in which we put

p-e/2, /-i/2, we get
(3.5) lim log liB(z) I<= 2Sr/(1-r,) + 16(1-rl)/r. lirn S()/ < /

+0

as z-- e inside D(e, r, r). By (8.4) and (3.), Theorem 8 is
eompleely established.

Proof of Theorem 4. If. zD(e,v)V, hen by Lemma g

(1), in which we put p--, z/-0, we obtain
0__<limlog[1/B(z) l<=0, i.e. lim IB(z) l-1

as z e inside D(e, ) .
If z e D(e, r, r=), then by Lemma 3 (2), in which we put

p-e*, z/-0, we get
0-<_limlogll/B(z) l<=0, i.e. limlB(z)]-i

as z-.e inside D(e, r, r.)2. Thus our theorem is completely
proved.
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