153. Some Applications of the FunctionalRepresentations of Normal Operators in Hilbert Spaces. XVII

By Sakuji Inoue

Faculty of Education, Kumamoto University (Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1965)

Let $T(\lambda)$ be the function treated in Theorems 43, 44, and 45 of the preceding paper. Namely $T(\lambda)$ has as its singularity every point belonging to the bounded set $\overline{\left\{\lambda_{\nu}\right\}} \cup\left[\bigcup_{j=1}^{n} D_{j}\right]$ where the denumerably infinite set $\left\{\lambda_{\nu}\right\}$ is everywhere dense on a closed or an open rectifiable Jordan curve Γ and satisfies the condition that for any small positive ε the circle $|\lambda|=\sup \left|\lambda_{\nu}\right|+\varepsilon$ contains the mutually disjoint closed sets $\Gamma, D_{1}, D_{2}, \cdots, \nu_{n-1}$, and D_{n} inside itself [cf. Proc. Japan Acad., 40 (7), 492-497 (1964)]. In this paper we are mainly concerned with the distribution of c-points of the sum of the first and second principal parts of $T(\lambda)$ in the domain $\left\{\lambda: \sup _{\nu}\left|\lambda_{\nu}\right|<|\lambda|<\infty\right\}$, on the assumption that c is an arbitrary finite complex number.

Theorem 46. Let $\chi(\lambda)$ be the sum of the first and second principal parts of the above-mentioned function $T(\lambda)$; let $\sigma=\sup \left|\lambda_{\nu}\right|$; let c be an arbitrarily given finite non-zero complex number; let $n(\rho, c)$, $(\sigma<\rho<\infty)$, be the number of all the c-points, with due count of multiplicity, of $\chi(\lambda)$ in the domain $\Delta_{\rho}\{\lambda: \rho<|\lambda|<\infty\}$; let

$$
N(\rho, c)=\int_{\rho}^{\infty} \frac{n(r, c)}{r} d r \quad(\sigma<\rho<\infty) ;
$$

and let

$$
m(\rho, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\left[\chi\left(\rho e^{-i t}\right), c\right]} d t \quad(\sigma<\rho \leqq \infty)
$$

where

$$
\left[\chi\left(\rho e^{-i t}\right), c\right]=\frac{\left|\chi\left(\rho e^{-i t}\right)-c\right|}{\sqrt{\left(1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}\right)\left(1+|c|^{2}\right)}} .
$$

Then the equality

$$
N(\rho, c)+m(\rho, c)-m(\infty, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}} d t
$$

holds for every ρ with $\sigma<\rho<\infty$; and in addition, $N(\rho, c), m(\rho, c)-$ $m(\infty, c)$, and the right-hand definite integral tend to 0 as ρ becomes infinite.

Proof. If we now consider the function $f(\lambda) \equiv \chi\left(\frac{\rho^{2}}{\lambda}\right),(\sigma<\rho<\infty)$, of a complex variable λ, then $f(\lambda)$ is regular in the domain $D\{\lambda: 0 \leqq$
$|\lambda| \leqq \rho\}$ because of the fact that to the domain D of f there corresponds the domain $D^{\prime}\left\{\frac{\rho^{2}}{\lambda}: \rho \leqq \frac{\rho^{2}}{|\lambda|} \leqq \infty\right\}$ of χ and that as will be seen from the definition of $\chi(\lambda), f(0)=\chi(\infty)=0$. If we next denote all the c-points, $(c \neq 0, \infty)$, of $f(\lambda)$ in the domain $\mathfrak{D}_{\rho}\{\lambda: 0<|\lambda|<\rho\}$ by $a_{1}, a_{2}, \cdots, a_{n(\rho)}, c$-points of orders higher than 1 being accounted for by listing the corresponding points a_{κ} an appropriate number of times, then all the c-points of $\chi(\lambda)$ in the domain $\Delta_{\rho}\{\lambda: \rho<|\lambda|<\infty\}$ are given by $\frac{\rho^{2}}{a_{1}} \equiv b_{1}, \frac{\rho^{2}}{a_{2}} \equiv b_{2}, \cdots, \frac{\rho^{2}}{a_{n(\rho)}} \equiv b_{n(p)}$ (repeated according to the respective orders) and the application of Jensen's theorem to $f(\lambda)-c$ yields the equality

$$
\log |f(0)-c|+\log \frac{\rho^{n(\rho)}}{\left|a_{1} a_{2} \cdots a_{n(\rho)}\right|}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\rho e^{i t}\right)-c\right| d t
$$

$$
(\sigma<\rho<\infty)
$$

For convenience' sake, we shall here rewrite the number $n(\rho)$ of all the c-points, with due count of multiplicity, of $f(\lambda)$ in \mathfrak{D}_{ρ} by $n_{1}(\rho, c)$. Then $n_{1}(\rho, c)$ equals $n(\rho, c)$ defined in the statement of the present theorem and it can be verified by direct computation that

$$
\begin{aligned}
& \int_{0}^{\rho} \frac{n_{1}(r, c)}{r} d r=\log \frac{\rho^{n(\rho)}}{\left|a_{1} a_{2} \cdots a_{n(\rho)}\right|} \\
& \int_{\rho}^{\infty} \frac{n(r, c)}{r} d r=\log \frac{\left|b_{1} b_{2} \cdots b_{n(\rho)}\right|}{\rho^{n(\rho)}}
\end{aligned}
$$

and hence

$$
\int_{0}^{\rho} \frac{n_{1}(r, c)}{r} d r=\int_{\rho}^{\infty} \frac{n(r, c)}{r} d r=N(\rho, c)
$$

Since, moreover, $f(0)=\chi(\infty)=0$, the equality establised before is rewritten in the form

$$
\log |\chi(\infty)-c|+N(\rho, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\chi\left(\rho e^{-i t}\right)-c\right| d t \quad(\sigma<\rho<\infty)
$$

Remembering the definition concerning $\left[\chi\left(\rho e^{-i t}\right), c\right]$ and subtracting $\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}} d t+\log \sqrt{1+|c|^{2}}$ from the left and right sides of the final equality, we have

$$
\begin{gathered}
-\log \frac{1}{[\chi(\infty), c]}-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}} d t+N(\rho, c) \\
=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\left[\chi\left(\rho e^{-i t}\right), c\right]} d t
\end{gathered}
$$

where it is easily verified that

$$
m(\infty, c)=\log \frac{1}{[\chi(\infty), c]}=\log \sqrt{1+|c|^{-2}}
$$

Consequently we obtain the desired relation

$$
N(\rho, c)+m(\rho, c)-m(\infty, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}} d t,
$$

where it is easily found that each of $N(\rho, c), m(\rho, c)-m(\infty, c)$, and the definite integral concerning $\log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}}$ tends to 0 as ρ becomes infinite.

Thus the present theorem has been proved.
Remark 1. Let $M_{f}(\rho)$ and $M_{x}(\rho)$ denote the maximum moduli of $f(\lambda)$ and $\chi(\lambda)$ on the circle $|\lambda|=\rho$ respectively. In Theorem 43 we have already proved that $M_{x}\left(\rho^{\prime}\right) \leqq M_{x}(\rho)$ for every pair of ρ^{\prime}, ρ with $\sigma<\rho<\rho^{\prime}<\infty$. Since, on the other hand, the function $f(\lambda)$ defined at the beginning of the proof of Theorem 46 is regular in the domain $\{\lambda: 0 \leqq|\lambda| \leqq \rho\}$ with $\sigma<\rho<\infty, M_{f}\left(\rho^{\prime}\right)<M_{f}\left(\rho^{\prime \prime}\right)$ for every pair of $\rho^{\prime}, \rho^{\prime \prime}$ with $0<\rho^{\prime}<\rho^{\prime \prime} \leqq \rho$. Hence $M_{x}\left(\rho^{\prime}\right)<M_{x}(\rho)$ for every pair of ρ^{\prime}, ρ with $\sigma<\rho<\rho^{\prime}<\infty$.

Remark 2. The result of Theorem 46 corresponds to Nevanlinna's first fundamental theorem concerning a meromorphic function and shows that $N(\rho, c)+m(\rho, c)-m(\infty, c)$ corresponds to a modified form of the characteristic function due to Ahlfors and Shimizu.

Theorem 47. Let $T(\lambda), \chi(\lambda)$, and σ be the same notations as before; let C be the positively oriented circle $|\lambda|=\rho$ with $\sigma<\rho<\infty$; let

$$
\begin{gathered}
\frac{1}{2 \pi i} \int_{\sigma} \frac{T(\lambda)}{\lambda^{-\mu+1}} d \lambda=0 \quad(\mu=1,2, \cdots, k-1), \\
C_{-k}=\frac{1}{2 \pi i} \int_{o} \frac{T(\lambda)}{\lambda^{-k+1}} d \lambda \neq 0
\end{gathered}
$$

let $\widetilde{n}(\rho, 0),(\sigma<\rho<\infty)$, be the number of all the zeros, with due count of multiplicity, of $\chi(\lambda)$ in the domain $\{\lambda: \rho<|\lambda|<\infty\}$; let

$$
\tilde{N}(\rho, 0)=\int_{\rho}^{\infty} \frac{\tilde{n}(r, 0)}{r} d r \quad(\sigma<\rho<\infty) ;
$$

and let

$$
\tilde{m}(\rho, 0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\left|C_{-k}\right|}{\left[\chi\left(\rho e^{-i t}\right), 0\right] \rho^{k}} d t \quad(\sigma<\rho<\infty) .
$$

Then

$$
\tilde{N}(\rho, 0)+\widetilde{m}(\rho, 0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}} d t \quad(\sigma<\rho<\infty),
$$

where $\widetilde{N}(\rho, 0), \widetilde{m}(\rho, 0)$, and the right-hand member tend to 0 as ρ becomes infinite.

Proof. Since, as already shown, $\chi(\lambda)=\sum_{\mu=1}^{\infty} \frac{C_{-\mu}}{\lambda^{\mu}},(\sigma<|\lambda|)$, where $C_{-\mu}=\frac{1}{2 \pi i} \int_{\sigma} \frac{T(\lambda)}{\lambda^{-\mu+1}} d \lambda$ [cf. Proc. Japan Acad., 40 (8), 654-659 (1964)],
the function $\quad F(\lambda)= \begin{cases}\frac{\chi\left(\frac{\rho^{2}}{\lambda}\right)}{\lambda^{k}} & (0<|\lambda| \leqq \rho, \sigma<\rho<\infty) \\ \frac{C_{-k}}{\rho^{2 k}} & (\lambda=0)\end{cases}$
can be expressed in the form $F(\lambda)=\sum_{\mu=k}^{\infty} \frac{C_{-\mu} \lambda^{\mu-k}}{\rho^{2 \mu}}$ by virtue of the hypothesis on $C_{-\mu},(\mu=1,2, \cdots, k)$, and is regular in the domain $\{\lambda: 0 \leqq|\lambda| \leqq \rho\}$. Let now all the zeros of $F(\lambda)$ in the domain $\{\lambda: 0<|\lambda|<\rho\}$ be denoted by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n(\rho)}$, zeros of orders higher than 1 being accounted for by listing the corresponding points α_{κ} an appropriate number of times. Then all the zeros of $\chi(\lambda)$ in the domain $\{\lambda: \rho<|\lambda|<\infty\}$ are given by $\frac{\rho^{2}}{\alpha_{1}}, \frac{\rho^{2}}{\alpha_{2}}, \cdots, \frac{\rho^{2}}{\alpha_{n(\rho)}}$ (repeated according to the respective orders) and yet the equality

$$
\begin{aligned}
\log |F(0)| & +\log \frac{\rho^{n(\rho)}}{\left|\alpha_{1} \alpha_{2} \cdots \alpha_{n(\rho)}\right|} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|F\left(\rho e^{i t}\right)\right| d t \quad(\sigma<\rho<\infty)
\end{aligned}
$$

holds in accordance with Jensen's theorem. Furthermore this equality is rewritten in the form

$$
\begin{aligned}
\log \left|C_{-k}\right| & -\log \rho^{k}+\log \frac{\rho^{n(\rho)}}{\left|\alpha_{1} \alpha_{2} \cdots \alpha_{n(\rho)}\right|} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\chi\left(\rho e^{-i t}\right)\right| d t \quad(\sigma<\rho<\infty)
\end{aligned}
$$

On the other hand, by reasoning exactly like that used in the course of the proof of the preceding theorem it is verified that

$$
\log \frac{\rho^{n(\rho)}}{\left|\alpha_{1} \alpha_{2} \cdots \alpha_{n(\rho)}\right|}=\tilde{N}(\rho, 0)
$$

and hence that

$$
\widetilde{N}(\rho, 0)+\widetilde{m}(\rho, 0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}} d t . \quad(\sigma<\rho<\infty),
$$

where

$$
\tilde{m}(\rho, 0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\left|C_{-k}\right|}{\left[\chi\left(\rho e^{-i t}\right), 0\right] \rho^{k}} d t .
$$

In addition, it is easily found that each of $\tilde{N}(\rho, 0), \widetilde{m}(\rho, 0)$ and the above definite integral concerning log $\sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}}$ tends to 0 as ρ becomes infinite.

The proof of the theorem has thus been finished.

