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Let T(2) be the function treated in Theorems 43, 44, and 45 of
the preceding paper. Namely T() has as its singularity every point

belonging to the bounded set {2}UIj=DjI where the denumerably
infinite set {} is everywhere dense on a closed or an open rectifiable
Jordan curve F and satisfies the condition that for any small positive
e the circle [1 sup[ +e contains the mutually disjoint closed
sets F, D, D., ..-, D_, and D inside itself [cf. Proc. Japan Acad.,
40 (7), 492-497 (1964)_. In this paper we are mainly concerned
with the distribution of c-points of the sum of the first and second
principal parts of T() in the domain {" sup l2 I[1}, on the
assumption that c is an arbitrary finite complex number.

Theorem 46. Let Z() be the sum of the first and second princi-
pal parts of the above-mentioned function T(2); let a-supl I; let
c be an arbitrarily given finite non-zero complex number; let n(p, c),
(ap), be the number of all the c-points, with due count o
multiplicity, of Z(2) in the domain A,{" p I1 }; let

);

and let

where

i I log dt (a < p< ),re(p, c) - EZ(pe-t), c

EZ(pe-’), e- z(pe-’)-cl
V(Z+ z(pe-’) c

Then the equality
1 I’o" ]OV/ 1+ Z(pe-t) I’N(p, c)+ re(p, c)-m(, c)=--

holds or every p with ap; and in addition, N(p, c), re(p, c)-
m(, c), and the right-hand definite integral tend to 0 as p becomes
infinite.

Proof. If we now consider the function f()--z(P),
of a complex variable 2, then f() is regular in the domain D{" 0=<
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I1_ P} because of the fact that to the domain D of f there cor-

responds the domain D’/-" < P<oo/ of Z and that as will be

seen from the definition of Z(), f(O)--Z(oo)-O. If we next denote
all the c-points, (c0, ), of f() in the domain {:
by a, a,.--, a, c-points of orders higher than 1 being accounted
for by listing the corresponding points a an appropriate number of
times, then all the c-points of X() in the domain 2{:

p pare given by b, b, ...,- b (repeated according to the

respective orders) and the application of Jensen’s theorem to f()-c
yields the equality

p"() 1 log f(pe,)_c dtlog f(O)-c + lg]aa-., a,() 2

For convenience’ sake, we shall here rewrite the number n(p) of
all the c-points, with due count o multiplicity, of f(2)in by
n(p, c). Then n(p, c) equals n(p, c) defined in the statement of the
present theorem and it can be verified by direct computation that

n(r, C) dr log
r aa...

n(r, C) dr_ log bb

and hence

I n(r, c)dr_I: n(r, c) dr-N(p, c).
r -r-

Since, moreover, f(0)=Z(oo)=0, the equality establised before is

rewritten in the form
1 -I log 7.(pe-O --c dt ((<p< oo).log Z( oo )-el + N(p, c)--- 0

Remembering the definition concerning Ez(pe-t), c and subtract-
ing
1 I0 log ]//1 +lz(pe-’) dt+ log ]/1 +1 c ] from the left and right
2
sides of the final equality, we have

1 1 t’[ log %/1+ Z(pe-) dt + N(p,
[z(oo), c]

2 [7(pe-O, c]
where it is easily verified that

m(, c)= log 1 = log 1+ ]c ]-.
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Consequently we obtain the desired relation

N(p, c)+m(p, c)-m(oo c)--- 10g 1/1+ I%(pe-) Idt,

where it is easily found that each of N(p, c), m(p, c)-m(, c), and the
definite integral concerning log l/i +lZ(Pe-")] tends to 0 as p be-
comes infinite.

Thus the present theorem has been proved.
Remark 1. Let M(p) and Mz(P) denote the maximum moduli

of f() and Z() on the circle I I-P respectively. In Theorem 43
we have already proved that Mz(p’)<=Mz(p) for every pair of p, p
with a<p< p’ < oo. Since, on the other hand, the function f()
defined at the beginning of the proof of Theorem 46 is regular in
the domain {:0__< ] I__<p} with a<p< , M(p’)<M(p") for every
pair of p’, p" with 0 < p’ < p"__<p. Hence Mz(p’) < Mz(p) for every
pair of p’, p with a<p< p’ < oo.

Remark 2. The result of Theorem 46 corresponds to Nevan-
linna’s first fundamental theorem concerning a meromorphic function
and shows that N(p, c)+m(p, c)-m(oo, c) corresponds to a modified
form of the characteristic function due to Ahlfors and Shimizu.

Theorem 47. Let T(2), (), and a be the same notations as
before; let C be the positively oriented circle I,I--P with a<p<
let

1 I T(21
27i

d-O (/-1 2,.-- k-l’)
--+i

1 I T(2)C_
27i o-+ d2=/= 0;

let (p, 0), (ap), be the number of all the zeros, with due
count of multiplicity, of Z(2) in the domain {2: p 12] < }; let

(p, 0)-- I ,(r, O) dr (a<p< );

and let

-a-2_l I log C_ dt (a<p< oo ).z(p, 0)- . Z(pe-"), O]p
Then

1 o log V 1+ Z(Pe-’t) dt (a<p<)N(p, O) + 0)

where (p, 0), (p, 0), and the right-hand member tend to 0 as p
becomes infinite.

ProoL Since, as already shown, Z(2)-.C’, (a<]2 I), where
=1

C_,=z,1 2-’+T([d cf_ Proc. Japan Acad., 40 (8), 654-659 (1964)
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the function F(2)-
(0< ]1 -<_P, a<p< o)

can be expressed in the form F()-, C-fl- by virtue of the hy-

pothesis on C_,, (=1,2,---,k), and is regular in the domain
{2:02]p}. Let now all the zeros of F() in the domain
{2: 0< 2] <p} be denoted by a, a, ..., a(,), zeros of orders higher
than 1 being accounted for by listing the corresponding points a an
appropriate number of times. Then all the zeros of Z()in the

P P P (repeated ac-domain {" p< ]] <} are given by ---,

cording to the respective orders) and yet the equality

log F(0) + log

log lF(pe)ldt (a<p<)
2

holds in accordance with Jensen’s theorem. Furthermore this equality
is rewritten in the form

log C_ log p+ log P’()

1 Io log lT(pe_,>ldt (a<p< ).
2

On the other hand, by reasoning exactly like that used in the
course of the proof of the preceding theorem it is verified that

pn(p)log --N(p, O)

and hence that
1 I0 log 1/1+ {)(pe-t) dt.N(p, o)+ o) (a<p<

where

(p, 0)= log .dt.
[X(pe-), 0p

In addition, it is easily found that each of N(p, 0), (p, 0) and
the above definite integral concerning log1+ X(pe-) tends to 0
as p becomes infinite.

The proof of the theorem has thus been finished.


