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142. On the Total Regularity of Riemann Summability

By Hiroshi HIROKAWA
Department of Mathematics, Chiba University, Chiba, Japan
(Comm. by Kinjird KUNUGI, M.J.A., Oct. 12, 1965)

§1. A method of summation is said to be regular if it assigns
to every convergent series its actual value. If it furthermore assigns
the value + < to every series which diverges to -+, it is said to
be totally regular. In this paper we shall consider the total regularity
of Riemann summability. Throughout this paper, » denotes a positive

integer. A series D>la, is said to be summable (R, p) to s if the
n=1
series in

filt)= 3 a, (22’

converges in some interval 0<t<t, and f,(t)—s as t—0+. A series
> a,, with its partial sum s,, is said to be summable (R,) to s if the
n=1

geries in

oo : b4
F0)=C;'t 35, (S‘Ztnt) .

where
had .
C,,=S w=? 8in ? u du,
0

converges in some interval 0<t<¢, and F,(t)—s as t—0+. It is
well-known that the methods (R, p) and (R,) are regular when p=2,
while the methods (R, 1) and (R,) are not regular. (See, for example,
[2]). But, concerning the total regularity of Riemman summability,
the S.C. Lee’s result [4] seems to be the only one. He proved that
the method (R, 2) is not totally regular.

§ 2. We shall first prove the following theorem.

THEOREM 1. The method (R, p) is not totally regular when p=2.
More precisely, given a monotone increasing sequence {W,} tending

to +o such that W, n~"—0 as n—o, there exists a series > a,
n=1
with |a,|=2W,/n for all n, such that

Sla,=+c and liminf ian(sin nt)p:—-oo.
n=1 t—0+ =1 nt
ProoF. We shall choose a sequence {N,} such that N,=1,
2N,_i<N,, and N,/25=an integer when k=2,3,4, ---, and define a

series > a, such that
n=1
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W,/ N, N.<n= 2—2Nk
6 31
=) —w,/2 —N,, <==N,
@y, w,/2N, 5 <n_25 P2
0 elsewhere,

where w,= Wy, , when k=1,2,3, ---. Then it is easily seen that
Sa,=+c. Let us now put t,=2r/N, and write

n=1
1)= 5, (S0t ) _ <§£1_”_)
(1) fp( ) E ( /ntv ) k2=1 n=EN,G an ntv
v—1 haid
:;1 U.+ U”+k§1 U,=>+>,+>,
say, where
_ Yegct o /sinnt, )”
v= 5, a()
For >3, we have
DIE DI
k<v
By 56 »
(W Lw, A |sinnd, 1)
@) - ICEQI(Nk n=;k+1 'nt,, 2 N ENjH nt,
<% 1y 1 1y
=i N, 25 "+2§v N, 25"
_1 2
= 25 kz -|— 50 Eywk< 25uwv—10

Now we estimate >7,.

20y . Sy .
S w, B (sinnt,\* w, B [(sinnt,\’
=N - T
=21, 2, Say.

’nt,, 2Ny ,”_GN +1 ntv
b
26
In 3, since N, <n=25Ny,

sinng,\" - 1 . ,2 SL
<nt >=(2 y S 95T = g5

and in 3, since 3gN <n_31N,,

Ny n=Ny+1

— 25
(St (82062 2 (2 s (10
Hence
22§<2l5) %Q%N 2 (3112z> 2—15N”
»
®) i) — 2 (o) 1

lIA

—Aw,,
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where A is a positive constant. Finally

3= S g, (kY
= a,
8 >y e, T\ b,
26 N . Sy :
< w, B ko lsinnt, [ Wy, B E \ginnt, [
=25
&>y Ny a=Tal nt, > 2 N, n=20 W41 nt,
=25
w 1 w 1
< k . _N Tk, _N
=& N 25 ¢ ,§2N1;;+1te 25~ "
w - w
< k ={-P _th—p v
T k> N2 Y >y N2 Y % "

where v,=w,/N%. Putting o,=v,/v,_,, We have

|3, | sty 3%
By,
(4)
=820,(0s41F 0vt1 OvroF Ovts Ovis Ovistee)
=o(w.t;?N;?)=o0(w,),
provided that
0x—0 as k—oo,
Since
W,n"—0 and W, /" o as n—co,
we may choose the sequence {N,} such that
kw,_/w,—0 and 0,—0 as k—o.
Thus, by (1), (2), (8), and (4), we have
Fot)=o(w,)—Aw,.
Therefore we get
limfp(tv):—oos
and then
lim inf f,(f)=—oo,
=0+
which is the required result.

§ 3. Next we shall state the following theorem without the
proof, since the proof is exactly similar to that of S.C. Lee’s theorem.
([4, Theorem 17).

THEOREM 2. Let p=1. Suppose that

a,=—K/n (=123, --+; K; a positive constant),

P 3 3 V4
Sa,=+ and > a,,(s‘;m) converges in 0<t<¢,.
n=1

n=1

Then

lim ﬁ a, (Sin nt>p =4 0
nt

t—0 n=1
§ 4. Concerning the methods (R,), we have the following theo-
rems.
THEOREM 3. The method (R,,) is totally regular.
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ProOOF. The proof is obvious if we use the I. Schur’s theorem
[1, p. T4]. But we give here a direct proof of the theorem. For the

proof, it is sufficient to prove that if ia,,=+oo, then
n=1

o0 : 2p
Eﬂﬁ@#2%02?>qm as 04,
n=1

Since >l a,=+ o, for an arbitrary positive number G, there exists
n=1
an integer N, such that

EZakZG when n=N,.

Now we take an arbltrary sequence {t,} such that £,\ 0 as y—oo,
Let N, be the greatest integer less than or equal to #/t,. Then we
may suppose N,>N, for sufficiently large v. Then we have

Fy(t,)=C', i‘, s, <ﬂ?u?_ty) >Csit, E” (sm nt, )

v v

>C5Gt, E(mn?t ) CGt, z:\smnt )

+@%ﬁ%@%&>

-—>C‘1GS (sn{;x) dx as y—oo,

Since, G is arbitrary, we have
ltlnol Fop(t)=+ oo,
which is the required result.
THEOREM 4. The method (R,,.;) is not totally regular.

PRrRooF. TFor the proof, using a theorem due to H. Hurwitz [3,
Theorem 6], it is sufficient to prove that

oo s 2041 s 2P 41
lim ¢S ( sin nt _<s122@t> >>0

t=0+ =1 nt
But this is easily proved using the definition of the definite integrals.
See, for example, [2, Proof of Lemma 1]. Thus we have Theorem 4.
§5. Let « be a real number such that —1<a<p—1, and let s be
the Cesaro sum, of order «, of a series ﬁ] a, with a,=0. If the
series in "

o . p
o(p, a, t)=C,Lt""* > s:( sin nt ) ,
n=1

nt
where
L[ Tursinrua —1<a<p-1
C. {F(a-]—l) u*"? sin” u du, <a<p-—l,
/2 a=-—1,

converges in some interval 0<t<t, and o(p, «, t)—s as t—0+, then
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the series ﬁan is said to be summable by the Riemann-Cesaro method

of order pnv;ith index «, or shortly, summable (R, p, @) to s. This
method of summation was introduced in my paper [2]. The method
(R, p, ) is regular when p=2 and —1=a<p—1. Concerning the
total regularity, we have the following theorem which is proved by
an argument similar to the direct proof of Theorem 3 in §4.

THEOREM 5. The method (R, 2p,a) is totally regular when
O=a<2p-—1.
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