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141. Some Mapping Theorems for the Numerical Range

By Tosio KATO
Department of Mathematics, University of California
(Comm. by Kinjiré Kunuel, M.J.A,, Oct. 12, 1965)

The purpose of the present note is to prove some mapping
theorems for the numerical range of a linear operator, somewhat
analogous to the spectral mapping theorem. Because of the peculi-
arity that the numerical range is always convex, the theorems are
rather restricted in validity compared with the spectral mapping
theorem.

In what follows we mean by an operator A a bounded linear
operator in a Hilbert space H with domain H. The numerical range
and the spectrum of A are denoted by W(A) and S(A), respectively.
It is well known that S(A)c W(A) ( denotes the closure) and that
W(A) is the closed convex hull of S(A) if A is normal.

Also we need the notion of the convex kernel K of a non-empty
set F in the complex plane; K is the set of all points z such that
FE is star-shaped relative to z. It is known" that K is a convex
subset of B, K=F if E is convex, and that K is compact if E is.

Theorem 1. Let f(2) be a rational function with f(co)=co.
Let E’ be a compact convex set in the complex plane, let E=f~'(E")
and let K be the convex kernel of E. If A is an operator with
W(A)cC K, then W(f(A)CE'.

Remark 2. Under the assumptions of the theorem, E’, E, and
K are all compact and f has no poles in E. Since S(4)c W(A)c
KcE, f(A) is well defined. K may be empty, in which case the
theorem is of no use. For K to be non-empty, it is necessary that
E be connected and contain all critical points of f(so that E’ contain
all branch points of the inverse function f=).

Corollary 3.2 If W(A) is a subset of the closed unit disk, the
same is true of W(A"), n=2,3, ---.

For the proof of Theorem 1 and other theorems given below,
we use the following lemma, the proof of which is trivial. We
set Re A=(A+A*)/2, Im A=(A— A*)/2%, and note that ((Re AJu, u)=
Re(Au, w), ([ Im Alu, u)=Im(Au, w) for any we H.

Lemma 4. Let A be a nonsingular operator. Then Re A=0 is

1) See [2] and [5].
2) This theorem is due to C. A. Berger [1]. The author was told that it was

also proved by C. M. Pearcy. For n=2m it had been proved earlier by H, Fujita
(unpublished).
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equivalent to Re A—'=0, and Im A=0 is equivalent to Im A~*=<0.

Proof of Theorem 1. If K is empty, there is nothing to be
proved. If K is contained in a straight line, the same is true of
W(A) so that A is normal. Then f(A4) is also normal and, since
S(f(A)=F(S(A) cAW(A)Cf(K)YCE' by the spectral mapping theo-
rem, we have W(f(A)CE'.

Thus we may assume that the convex set K is the closure of
its interior K°. We may further assume that W(A)c K°; if we
prove the theorem in this special case, the general case can be dealt
with by considering 14, 0<A<1, and going to the limit A—1
(assuming 0e€ K° without loss of generality).

Thus we shall assume K=K° and W(A)c K° in the remainder
of the proof. Then S(A)c W(A)c K° and S(f(A))=£(S(A)) is in the
interior of E’. It follows that (f(A)—¢')™" exists as a bounded
operator for any ¢’ on the boundary C’ of E’.

To prove the theorem it suffices to show that for any support-
ing line I’ of E’', W(f(A)) is contained in the closed half-plane
bounded by !’ and containing E’. Here we may restrict I’ to
genuine tangents to C’, for the tangents exist and change conti-
nuously except possibly at a countable number of points. Thus we
have only to prove that Im e~ ((f(A)—c")u, u)=0 for all ue H or,
equivalently,

(1) Im [e~*'(f(A)—¢)]=0

for each ¢’ e C' where the tangent !’ exists, where ¢’ is the angle
of inclination of I’(with respect to the positive real axis) oriented
in such a way that E’ lies to the left of I'. In virtue of Lemma
4, (1) is equivalent to

(2) Im [ (f(A)—c)]=0.

We may further assume that ¢’ is not a branch point of f—,
for there are only finitely many branch points. Then the poles
¢, oo+, ¢, of (f(z)—c )™ are all simple, with f'(¢,)>=0, and we have
the partial fraction expansion (note that f(co)=co)

(3) (fR)—e) =21 "(e) (e —c) ™"
We have the same identity with z replaced by A. To prove (2),
therefore, it suffices to show that for each k&

(4) Im [ f'(c.) (A—er)]=0.
By Lemma 4, (4) is in turn equivalent to
(5) Im [e=f"(c;) (A—¢,)]=0.

Since f(c,)=¢" and f'(¢,)#0, f is conformal on a neighborhood of
¢, to a neighborhood of ¢’. Since ¢’ e (’, ¢, is on the boundary C of
E and C has a tangent [, at ¢,. Let 6, be the angle of inclination
of l,. Then arg f'(c,)=0'—6, so that e~**f'(c,)=¢ " | f'(¢,)|. But
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Im [e~*(A—c,)]=0, for W(A)C K is in the half-plane to the left of
l;, as is easily seen by a simple geometric consideration. This proves
(5) and completes the proof of Theorem 1.

Theorem 1 is “global” in the sense that the behavior of f in
the whole plane is essential; if f were defined only on a subset D
of the plane, the theorem is not applicable. We shall now prove
some mapping theorems which are “local” in this respect, but these
are restricted to functions defined on special domains: disks and
half-planes. We shall state the theorems for the closed unit disk
D:|z|<1 and the closed right half-plane P:Rez=0, but it is
obvious how they should be modified in the general cases.

Theorem 5.» Let f(z) be holomorphic on D and map D into D,
with f(0)=0. If W(A)cD, then W(f(A))cD.

Theorem 6. Let f(z) be holomorphic on D and map D into
P, If W(A)cD, then W(f(A))c P—Re f(0) (the half-plane Rez=
—Re f(0)).

Theorem 7. Let f(z) be holomorphic on P. If W(A)c P, then
W(f(A)) is a subset of the closed convex hull of f(P).

Remark 8. These three theorems are similar in some respects
but are essentially different. The reason for difference is that the
linear transformations ¢ that map D onto P (for example ¢(z)=
(1—2)/(1+2)) do not have the same effect on the numerical range.
In other words, the condition W(A)c D is weaker than W(¢(A))C P;
the latter is equivalent to || A ||<1 rather than to W(A)cD. For
this reason, the assumption of Theorem 7 is rather strong and the
conclusion is strong accordingly. For the same reason, the term
—Re f(0) in Theorem 6 cannot be dropped. In view of these facts,
it is rather remarkable that Theorem 5 is true.

Proof of Theorem 6. We have the following well-known
formula® representing f(z) in terms of the real part of its boundary
values:

f&y=i Im fO)+ = | "[Re fte)) -2 s
2 Jo et —z

== O+ L [ "[Re fle] (1 —erayat.
The same formula is true when z is replaced by A, so that
Re f(4)=—Re f0)+ | "[Re fle)] [Re (1—c*4)1dt.
But W(A)c D implies Re (1—e~*A)=0 and hence Re[(1—e "A)"]=0

8) Corollary 3 is also a consequence of this theorem, which is due to Sz. Nagy
(the author owes this and other informations to P. D. Lax).
4) See [4], p. 570.
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by Lemma 4. Since Re f(e'*)=0 by hypothesis, we have Re f(A)=
— Re £(0).

Proof of Theorem 5. Set g(z)=(1+af(2))/(1—af(z)), where a is
a constant with |a|<1. Since g maps D into P with g¢(0)=1, an
application of Theorem 6 to g shows that W(g(A))cP—1 or
Re(g(A)+1)=0. Since g(A)+1=2(1—af(A))", it follows by Lemma
4 that Re(l1—af(A)=0. Since a is arbitrary as long as |a|<1, we
have W(f(A))cD.

Proof of Theorem T. Set B=(A—1)(A+1)™"; then ||B||=1
(see Remark 8). We have f(A)=h(B), where h(z)=f((1+2)/(1—=7)).
It is obvious that f(P)cCh(D).

h is not necessarily holomorphic on the closed set D, but h,(z)=
h(2z) is for each positive 2<1. To prove the theorem, it suffices to
show that W(h,(B)) is a subset of the closed convex hull of A(D).
To this end it suffices to show that W(h,\(B)) is contained in any
closed half-plane II that contains (D). Let p be an interior point
of IT and let ' be its image with respect to the boundary of II.
Then W(h,(B))CII is equivalent to || (h\(B)—p) (hr(B)—p")"||=1
(see again Remark 8). But the latter is a consequence of von
Neumann’s theorem,” for | (h\(z)—p) (ha(z)—p')*|<1 for ze D and
I B|l=1.
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