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176. Algebraic Formulations of Propositional Calculi

By Kiyoshi ISEKI
(Comm. by Kinjiré KUNUGI, M.J.A., Nov. 12, 1965)

In this note, we shall concern with the Frege (F)-system and the
Lukasiewicz (L;)-system. As well known, the (Li)-system:
1 CpCqp,
2 CCpCqrCCpqCopr,
3 CCNpNqCqp
characterizes two valued classical propositional caleulus. In the (F)-
system, the third axiom CCNpNqCqp are replaced into three axioms:
CCpqCNqNp, CNNpp, and CpNNp and these five axioms give a
complete axiom system for two valued propositional caleulus.

If we take three axioms:
1 CpCqp,
2 CCpCqrCCpqCopr,
3  CCpNqCqNp,
we can deduce Cpp and CCpqCNqNp. As already shown in [1] and
[2], from axioms 1 and 2, we have

4  Cop,
5 CCpqCCqrCypr,
and

6 CCqrCCpqCopr.
Then we have the following theses:
3" p/Nq *C4 p/g—T,
7 CqNNg.
6 r/NNq *C7—38,
8 CCpqCpNNg.
5 p/Cpq, ¢/CpNNg, r/CNgNp *C8—C3" q/Nq—9,
9 CCpqCNqNp.
On the other hand, if we take
1 CpCqp,
2 CCpCqrCCpqCopr,
38"  CCNpqCNgp.

From the remark above, we have the theses 4, 5, and 6 by the
axioms 1 and 2. Further we have the following theses by the same
techniques above:

3" q/Np *C4—T,
7 CNNpp.

5 »/NNp, q/p, r/q *CT—38,
8 CCpgqCNNpq.
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5 p/Cpq, ¢/CNNpq, r/CNgNp *C8—C3" p/Np—9,
9 CCpqCNqNp.
Therefore, under the axioms 1 and 2, we have
) = (3~ ©
N (8" =
In these systems, from the table
0 1|N

00 1|0

1/0 01
we know that the first two axioms are independent to each axiom
containing the symbol N.
Consider the following table:

0 1N
0/0 1|0
1/0 0]0

Then CCpgCNgNp and CCpNqCqNp always have the designated
value 0. On the other hand, if we substitute in the thesis CCNpgqNqp
for p/1 and ¢/0, we have CCN10CN01=CC00C01=C01=1.

Next we shall consider the following table:

0 1 N
0(0 1|1
110 01

Then CCpqCNgNp and CCNpgCNgp have the designated value O.
In the thesis CCpNqCqNp, we substitute for p/1 and ¢/0, then
CCN1NO0C01=CC111=C01=1. Therefore from the results above,
we have the following

Theorem 1. The axitoms 1, 2 and CCpgNgNp do mot imply
CCNpgCNgp, CCpNqCqNp, and CCNpNqCqp. The axioms 1, 2 and
CCNpqCNgp (or CCpNqCqNp) do mot imply CCpNqCqNp (or
CCNpqgCNgp) and CCNpNqCqp.

By this fundamental theorem, we have three algebraic systems
as well as the usual Boolean algebra. From these considerations, we
have algebraic systems by the following technique (see an algebraic
formulation of positive logic, see [3]).

Let {X, 0, %, ~> be an algebra consisting of a set X containing
an element 0 and a binary operation * and an unary operation ~
defined on X such that the axioms given below hold. For convenient,
we introduce an order relation. We write <<y for xxy=0. Then the
axioms are written as follows. For z,y,z2¢ X,
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CrYLL,

(ex2)x(y*2)<(rxy)*z.

wxy < (~y)*(~1).

<.

<y and y<z imply x=y.

Here we can replace the axiom 3 into other axioms:

3 (~a)xy<(~y)xw,

3" wa(~y)<Syx(~2)

or

3" (~2)*x(~y)<Syxw.

Therefore we have four algebraic systems.” From axiom 3', we have
(~y)xe<(~a)*y ,

which shows that (~2)*xy=(~y)*x by axiom 5. Similarly from the

axioms 3" and 5, we have xx(~y)=yx*(~2x).

Theorem 2. Under axioms 3’ and 5, we have

(~x)xy=(~y)*w
and under axioms 3",5, we have
Lk (~y)=y*(~x).
If we add an axiom =~ (~zx), then from axiom 3, we have
(~a)x (~y) < (~(~y)x(~(~a)) =y .
Hence (~y)*(~x)<x*y. Axioms 3, 5 and the relation obtained imply
xxy = (~y)*x(~2x). Therefore we have the following

Theorem 3. If, in each one of algebraic systems above, we add
an axiom x=~(~x), we have xxy=(~y)*x(~x).

On the other hand, from axioms 1, 2, 4, and 5, we have the
relations between * and <, as already shown by L. Henkin [3].
These relations are fundamental for developing our theory. We shall
prove some of them.

1) O0xx=0.

In axiom 1, we substitute /0 and y/x, then 0x2<0. Hence by
axiom 5, we have 0xx=0.

2) xxx=0, i.e. x<w.

By axiom 1, we have (xxx)xx=0 and (xx(xxx))xx=0. From
axiom 2, (xxx)* (@ *x)*x)<(x*x(xxx))*x. This shows (xx2)x0<0 by
axioms 4 and 5.

3) If wxy=0, yxz=0, then xxz=0, i.e. x<y, y<z imply r<z.

By axiom 2 and proposition 1), we have (x%2)x0<0x2=0.
Hence xxz = 0, i.e. x<z.

As a result corresponding the commutative transportation law
in propositional calculi, we have

[SA VLR R

1) The fundamental properties of equality are obtained by propositions 2 and
3 below.
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4) If xxy<z, then x+2<y, i.e. (xxy)*2=0 tmplies (x*x2)*y=0.

Axiom 2 and (x*xy)x2z = 0 imply (x*2)*(y*z) = 0. By y*xz<y,
we have x*z<y, i.e. (x*xz)xy = 0.

On the logical syllogistic law, we have the following

5) Ifx<y, then zxy<zxw, i.e. xxy=0 implies (zxy)*(z*x)=0,

Axioms 1 and 2 mean (z*x)*xy<z*xx and (Rxy)*x(@*y)<(2*x)*xy
respectively. By «xy=0 and the inequalities above, we have
(zxy)*x0<(zx2)*y<zxx. Hence by proposition 4, (z*xy)*x(zxx) =0,
le. 2xy<<zxw.

6) If x<y, then xxz<y=*z, i.e. xxy=0 implies (xx2)*(y*2z)=0.

From axiom 2 and proposition 1, we have (xx2)*(y*2)<(x*y)=*
2=0x%x2=0. Hence by axioms 4 and 5, we have (xx*z)*x(y+xz)=0,
which proves proposition 6.

T yxx=(y*xx)*x.

From axiom 2, we have (yxz)x(xxx)<(y*2)*2. Further, by
proposition 2, (y*x)*x0<(y*x)*x, and yxx<(y*x)xx<y*xx by the
commutative law and axiom 1.

Now consider an abstract algebra (X, 0, x, ~>.

Definition. If <X, 0, x, ~> satisfies axioms 1, 2, 3 (3', 3", 3""),
4, and 5, it is called a B (NB, BN, NBN)-algebra respectively.

Consider an NB-algebra <X, 0, x, ~>, then (~z)x(~x)=
(~(~x)*x by (~x)xy=(~y)*x. From proposition 2, (~x)*(~x)=0,
therefore we have ~(~x)<x. By theorem 2, we have (~2)xy=
(~y)*x. Hence we have (~2)*(~y)=~(~y)*x<y*2 by proposition
6. This shows that any NB-algebra is an NBN-algebra. Similarly,
for a BN-algebra, we have < ~(~x), and from theorem 2, xx(~y)=
y*(~x), hence we have (~x)*(~y)=y*(~(~z))<y=*2x by proposition
5. Therefore, we have the following

Theorem 4. Any BN-algebra (NB-algebra) is an NBN-algebra.

This corresponds to theorem 1. Next we shall prove that any
B-algebra is an NB-algebra and a BN-algebra. To prove it we need
some propositions.

8) zxy<~y, xx(~y)<y.

By axioms 1 and 3, we have

ey <(~y)*(~2) <~y
and moreover, by the commutative law 4, we have x*(~y)<y.
9) < ~(~2x).
By axiom 3, we have
21 (~ (~ ) <~ (~ (@) (~ )
On the other hand, in the first inequality of proposition 8, we sub-
stitute ~(~(~2)) for  and ~z for y, then we have

~(~(~@))*(~2) < ~(~2).
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Hence by proposition 3, xx(~(~a))<~(~2a), i.e. (xx(~(~x)))*
(~(~2))=0. Applying proposition 7, we have x*(~(~x))=(x*
(~(~2)))*(~(~2))=0, which shows xx(~(~2))=0. This means
< ~(~w).
10) ~(~a)<w.
By axiom 3 and x*(~(~«))=0, we have
(~(~z))x < (~2)* (~(~(~2))=0.
Hence ~(~x)<x.
From 9 and 10, we have
11) ~(~z)=w.
By axiom 3 and proposition 3, we have
T* (~y) <(~(~y) *x(~x)=y*(~x).
This means that any B-algebra is a BN-algebra. Similarly, we have
the following
Theorem 5. Any B-algebra s a BN-algebra and an NB-algebra.
~(~x)=x holds in the B-algebra.
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