167. Monotone Sequence of 0-dimensional Subsets of Metric Spaces

By Keiô NAGAMI

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1965)

Let ω_1 be the first uncountable ordinal and $\omega(c)$ the first ordinal whose power is c. This paper proves the following two theorems.

Theorem 1. Let X be a metric space which is the countable sum of 0-dimensional subsets. Then there exists a sequence $\{J_i: i < \omega\}$ of subsets of X such that i) $J_i \subset J_{i+1}$ for every *i*, ii) dim $J_i \leq 0$ for every *i*, and iii) $\bigcup J_i = X$.

Theorem 2. Let X be a non-empty metric space. Then there exists a transfinite sequence $\{J_{\alpha} : \alpha < \omega_1\}$ of subsets of X such that i) $J_{\alpha} \subset J_{\beta}$ whenever $\alpha < \beta$, ii) dim $J_{\alpha} \leq 0$ for every α , and iii) $\cup J_{\alpha} = X$.

In both cases we use the following notations, where ρ is the preassigned metric on X. Take two sequences $\mathfrak{U}_{ij} = \{U_{\lambda} : \lambda \in A_{ij}\}$ and $\mathfrak{F}_{ij} = \{F_{\lambda} : \lambda \in A_{ij}\}$, where $i, j = 1, 2, \cdots$, which satisfy the following conditions (cf. Bing [1]):

- (1) \mathfrak{U}_{ij} is a discrete collection of open sets of X.
- (2) \mathfrak{F}_{ij} is a collection of non-empty closed sets of X.
- (3) $F_{\lambda} \subset U_{\lambda}$ for every $\lambda \in A$, where $A = \bigcup A_{ij}$.
- (4) $\mathfrak{F}_i = \{F_\lambda : \lambda \in A_i\}$ covers X for every *i*, where $A_i = \bigcup A_{ij}$.
- (5) $\mathfrak{U}_i = \{U_{\lambda} : \lambda \in A_i\}$ is locally finite.
- (6) $\rho(\mathfrak{U}_i) < 1/i$.

Set $U_{ij} = \bigcup \{U_{\lambda} : \lambda \in A_{ij}\}$ and $F_{ij} = \bigcup \{F_{\lambda} : \lambda \in A_{ij}\}.$

Proof of Theorem 1. Let I' be the set of all rational numbers r with 0 < r < 1. By Nagata [4, Lemma 4.1] there exists a collection $\{U_{ijr}: i, j=1, 2, \dots, r \in I'\}$ of open sets of X which satisfies the following conditions:

- (7) $F_{ij} \subset U_{ijr} \subset \overline{U}_{ijr} \subset U_{ijs} \subset \overline{U}_{ijs} \subset U_{ij}$ for r < s.
- (8) $\{B(U_{ijr}) = \overline{U}_{ijr} U_{ijr} : i, j = 1, 2, \dots, r \in I'\}$ is pointfinite.

Let $I' = \{r_1, r_2, \dots\}$ and $J_i = X - \bigcup \{B(U_{jkr}): j, k=1, 2, \dots, r \in I' - \{r_1, \dots, r_i\}\}$. Then by Morita [3, Lemma 3.3] dim $J_i \leq 0$. It is evident that $J_1 \subset J_2 \subset \cdots$. To see $\bigcup J_i = X$ let x be an arbitrary point of X. By (8) there exists i such that $x \notin B(U_{ijr})$ for any i, j and any $r \in I' - \{r_1, \dots, r_i\}$. Hence $x \in J_i$ and the proof is completed.

Proof of Theorem 2. Let *I* be the unit interval [0, 1] and $\{I_{\alpha} : \alpha < \omega(c)\}$ the family of all residue classes of *I modulo* the rational numbers. Set

$$L_{\alpha} = \bigcup \{ I_{\beta} : \beta \leq \alpha \text{ or } \omega_1 \leq \beta < \omega(\mathfrak{c}) \}, \ \alpha < \omega_1.$$

K. NAGAMI

Then we have a sequence $\{L_{\alpha}: \alpha < \omega_{i}\}$ such that i) $L_{\alpha} \subset L_{\beta}$ whenever $\alpha < \beta$, ii) dim $L_{\alpha} = 0$ for every α , and iii) $\bigcup L_{\alpha} = I$. This sequence is taken from Dowker [2].

Let $f_{ij}: X \rightarrow I$ be a continuous function such that i) $f_{ij}(x)=0$ if $x \in X - U_{ij}$ and ii) $f_{ij}(x)=1$ if $x \in F_{ij}$. Put $\sigma(x, y) = \rho(x, y) + \sum_{i=1}^{n} (|f_{ij}(x) - f_{ij}(y)|)/2^{i+j}$.

Then σ is an equivalent metric to ρ such that $\sigma(F_{ij}, X-U_{ij})=d_{ij}>0$ for every *i*, *j*. For any *t* with $0 < t \leq 1$ set

 $H'(i, j, t) = \{x: \sigma(x, F_{ij}) = t\},\ H(i, j, t) = H'(i, j, t) \cap U_{ij},$

 $J_{\alpha} = X - \bigcup \{H(i, j, t): i, j = 1, 2, \dots, 0 < t \in I - L_{\alpha}\}.$

Then $\{J_{\alpha}: \alpha < \omega_1\}$ satisfies the required conditions. The inequalities $J_0 \subset J_1 \subset \cdots \supset J_{\alpha} \subset \cdots \subset \omega$ from the fact that $L_0 \subset L_1 \subset \cdots \supset L_{\alpha} \subset \cdots$.

Let us prove dim $J_{\alpha} \leq 0$. Since $I - L_{\alpha}$ is dense in I, we can pick a number t_{ij} from $I - L_{\alpha}$ with $0 < t_{ij} < d_{ij}$ for every i and j. Set $V_{ij} = \{x; \sigma(x, F_{ij}) < t_{ij}\},$

$$\mathfrak{B}_{ij} = \{ V_{\lambda} = U_{\lambda} \cap V_{ij} : \lambda \in A_{ij} \}.$$

By (4) and (5) $\mathfrak{B}_i = \{V_{\lambda} : \lambda \in A_i\}$ is a locally finite open covering of X. By (6) and by the fact that \mathfrak{U}_i refines \mathfrak{U}_i the mesh of \mathfrak{B}_i with respect to ρ is less than 1/i. Hence $\{V_{\lambda} : \lambda \in A\}$ is a σ -locally finite open base of X. Let λ be an arbitrary index from A_{ij} . Since $\overline{V}_{\lambda} - V_{\lambda} \subset \overline{V}_{ij} - V_{ij} \subset H'(i, j, t_{ij}) \subset U_{ij}, \ \overline{V}_{\lambda} - V_{\lambda}$ does not meet J_{α} . By Morita [3, Lemma 3.3] we get dim $J_{\alpha} \leq 0$.

To prove $\bigcup J_{\alpha} = X$ let x be an arbitrary point of X. Set

 $L = \{h(i, j) = \sigma(x, F_{ij}): 0 < h(i, j) \leq 1, x \in U_{ij} - F_{ij}\}.$

Since L is countable, there exists $\beta < \omega_1$ with $L \subset L_{\beta}$. If $0 < t \in I - L_{\beta}$ and $h(i, j) \in L$, then $x \notin H(i, j, t)$. If either $x \in X - U_{ij}$, $x \in F_{ij}$ or h(i, j) > 1, then $x \notin H(i, j, t)$ for any t. Therefore $x \notin H(i, j, t)$ for any i, j, and t with $0 < t \in I - L_{\beta}$, which implies $x \in J_{\beta}$. The proof is completed.

References

- R. H. Bing: Metrization of topological spaces. Canad. J. Math., 3, 175-186 (1951).
- [2] C. H. Dowker: Local dimension of normal spaces. Quart. J. Math. Oxford (2), 6, 101-120 (1955).
- [3] K. Morita: Normal families and dimension theory for metric spaces. Math. Ann., 128, 350-362 (1954).
- [4] J. Nagata: On the countable sum of zero-dimensional metric spaces. Fund. Math., 48, 1-14 (1960).