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165. On the Isomorphism Problem of Certain Semigroups
Constructed from Indexed Groups

By Morio SASAKI
Department of Mathematics, Iwate University, Morioka
(Comm. by Zyoiti SUETUNA, M.J.A., Nov. 12, 1965)

T. Tamura, in [1], has showed that the cancellative, archimedean,
nonpotent, commutative semigroup S can be constructed from the
indexed group G with index I, defining a product in S=N,x G, where
N, is the set of all non-negative integers, by (m, x)(n, y)=(m+n-+
I(x, y), xy) and proposed a problem that under what condition, is S
constructed from G with I isomorphic upon S’ from G’ with I'? In
this paper, we shall give a solution without proofs for the above.

1. For any element a of an indexed group G with an index I
and any integers r and s we define pi(a) as follows:

0@)=3] Ka, ') if s—r=0,
=0 if s—r=-1,
=— § I{a,a’) if s—r=-2,

i=8+1
where @’ means the identity element of G.
Then we get the following lemmas:
Lemma 1. For any integers r,s, and t it holds that
0:-(a) +04(a) = p(a).

Therefore, immediately

Lemma 2. If the order of a is m, then, for any integers r
and s

o7 (a) = rop(a)+ i)
Lemma 3. For any integers r and s
K@, a7)=05"*(a)— i (@) = 01 +*~(@)— 01 (@)

From Lemmas 1 and 3

Lemma 4. For any integer r

pila~)=(r+1)o(a)—p%,_.(a).

2. Let S=N,xG and S’=N,xG be cancellative, archimedean,
nonpotent, commutative semigroups constructed from indexed groups
G with I and G’ with I’ respectively. Suppose that S is isomorphie
upon S’ under ¢. Let ¢ and ¢’ be the identity elements of G and G’
respectively and put (0, e)p=(n',e) and (0, ¢ ) '=(n,e,). Since
0, &)=(n, e)o=((0, €,)(0, €)*)p, where we agree that a3’ means a for
every &, Be S, we get

Lemma 5. nn'=0,
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We define the symbol 0;(a’), a’€ G’ as follows:
oMaN=1I"@, @) i s—rz0,

=6=r if s—r=-1,

= T—EI I'e/,a') if s—r=-2,

t=8+1

Using, then, Lemmas 1, 3, and 4 we get

Lemma 6. Let (p, etx) and (p', e*'y’) be any elements of S and
S’ respectively. If (0, x)p=(r,x’) and (0, y)o'=(r",y), then
(1) (o, esx)p=(r+k+n't+poi'=(et)+1I'(ert, &), e'x"), t=p—nk— (e,
"—I(ega x)’

(i) @, "y =0"+k +nt'+ i (e)+ Lef, y), €'y), t'=p"—n'k' —
o e)—I'(es’, ¥').

Lemma 7. If h and b’ are the orders of e, and e, respectively,
then it holds that h=h'n"+ 0" (e;) and h'=hn+ o} (e,), where h=0
means that the order of e, is infinite and h'=0 does so.

Since Sp==S’, by Lemma 6, we get

Lemma 8. For any integer s and for any x€ G and y' € G it
holds that
(1) r+s+ne(s)+ " (er) + I'(er”, a") 2 0, 8(s) = —ns — 01~ *(e) — I(e5, )
and
() 7"+s+nt'(s)+ 1" (e) + L6t ), y) 2 0,t'(s) = —n's— " H(eq) — I'(er’,
y"), where (0, )p=(r, z'), (0, ¥ )~ =(r', y).

Lemma 8 is equivalent to the following

Lemma 9. For any integer s and for any x€ G and y' € G’ it
holds that
(i) 7r+min {0 mm {s—l—n't(s)— 21] I'(ey, e{,‘w')} rlr;in {—s+n't(—s)+

i=t(8)
t(—s8)—1
I'(ef, eg'x')}}go and

=0

-1
(i) 7' +min {o, min {s—}—fnt’(s)— ST Ie, ez;y)}, min {——s+nt’(—s)+
i=t'(8) 1ss

t'(—s8)—1
2 I, eoy)}}
where (0, 2)p=(r, OG’) 0, ¥ =", y).
We note here that for s=1 it holds #(s)=<0, t(—s)=0, t'(s)<0 and
m—1
t'(—s)=0 and we agree that both the symbols >3 I'(el, eix’) and

m—1 v=m
; I(e,, eiy) mean 0. And if the orders of ¢, and e} are h(+#0) and
h'(#0) respectively, we may restrict the s in (i) of Lemmas 8, 9 as
0=s<h and the s in (ii) as 0=<s<h’ and may cancel the terms
t(—s8)—1
min{—s+n't(—s)+ SV I, e{,"x’)}
i=0

1ss
in (i),



No. 9] Isomorphism Problem of Certain Semigroups 765

rlnsin {—s+nt’(—s)+t (2,; ' I(e,, eﬁy)}
in (ii) of Lemma 9.

Moreover we have the following lemmas:

Lemma 10. If (0, 2")p~'=(r, x), r+#0, then (0, e "z )p'=(s, %)
Jor any integer s such that 0=s=r. Andif (0, y)o=(",¥y"), r+#0,
then (0, e ~""y)p=(s',y") for any integer s’ such that 0=s'<7’,

Lemma 11. Let (0, x)o=(0, 2') and (0, y)p=(0,y"). If xy=ekz
and (0, 2)p=(0,2"), then x'y'=e*'2" and I'(x',y")=n'k'+k+ 0", (e))—
I'(e™, x'y'), where k'=—nk— 0" (e,)+ I(x, y)+ I(e;*, xy).

Lemma 12. If (0, ei)p=(0, e;'’), then 1= —n't'+p0}e;) and i'=
—ni+0ie,).

From Lemmas 6 and 10 we can easily see that it is possible to
choose a representative system I” of the cosets of the cyclic subgroup
[e,] generated by ¢, in G and a representative system I of the cosets
of [e;] in G’ satisfying the following: for any x,¢c I", there exists
w, € I" such that (0, ,)o=(0, z).

Now, for these I" and I”, we define a mapping + of G/[e,] into
G'/[e;] as follows: for x, e I" and for x), € I such that (0, x,)p=(0, x.)
Vv [e]x.—[e] 2.

Using Lemma 11, we see that « is an isomorphism of G/[e,]
upon G’/[e;]. Therefore

Lemma 13, G/[e,] s isomorphic upon G'/[e;].

3. Summarizing the above lemmas, we get the following:

Theorem. S=N,xG is isomorphic upon S'=N,x G if and only
if there exist cyclic subgroups [e,] of G and [e)] of G' such that
G/le,] s isomorphic upon G'/[e;] (under ) and there exist repre-
sentative systems I'={x,} of the cosets of [e,] in G and I"={x.}
of the cosets of [e)] in G’ satisfying

(1) for any x.,xgel’, if T wp=elxy, xyel', then x,r-x50=
e w7 and I'(x.T, 2eT)=n'V+1+ 02 (e0)—I'(ey™", %ot 26T), I'=—nl+
I(xa’ xﬁ)—p?—l(eO)‘l‘I(eo_ly xaxﬂ),

(2) for any integer s and for any x.€ " and xje I

(1) s+n't(s)+ 1 (e)+ I'(eft™, 2,7)=0, t(s)=—ns— 0} (&) —
I(es, x,) and

(i) s+mt/(s)+ 01 (o) + L}, hr) 2 0, /() = — s — pi*~ep)—
ey, ),
where T is @ mapping of I" onto I" such that

T =% of ([eJa)y=[e]a,

and n,n’ are non-negative integers such that mn'=0,n't'=—i+
pier), ni=—1'+p¥e,) for eir=e,, eic .
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