165. On the Isomorphism Problem of Certain Semigroups Constructed from Indexed Groups

By Morio SASAKI

Department of Mathematics, Iwate University, Morioka (Comm. by Zyoiti SUETUNA, M.J.A., Nov. 12, 1965)

- T. Tamura, in [1], has showed that the cancellative, archimedean, nonpotent, commutative semigroup S can be constructed from the indexed group G with index I, defining a product in $S=N_0\times G$, where N_0 is the set of all non-negative integers, by (m,x)(n,y)=(m+n+I(x,y),xy) and proposed a problem that under what condition, is S constructed from G with I isomorphic upon S' from G' with I'? In this paper, we shall give a solution without proofs for the above.
- 1. For any element a of an indexed group G with an index I and any integers r and s we define $\rho_r^s(a)$ as follows:

$$ho_r^s(a) = \sum_{i=r}^s I(a, a^i) & ext{if } s - r \ge 0, \ = 0 & ext{if } s - r = -1, \ = -\sum_{i=s+1}^{r-1} I(a, a^i) & ext{if } s - r \le -2, \$$

where a^0 means the identity element of G.

Then we get the following lemmas:

Lemma 1. For any integers r, s, and t it holds that

$$\rho_r^{s-1}(a) + \rho_s^t(a) = \rho_r^t(a)$$
.

Therefore, immediately

Lemma 2. If the order of a is m, then, for any integers r and s

$$\rho_1^{mr+s}(a) = r \rho_1^m(a) + \rho_1^s(a)$$
.

Lemma 3. For any integers r and s

$$I(a^r, a^s) = \rho_s^{r+s-1}(a) - \rho_1^{r-1}(a) = \rho_r^{r+s-1}(a) - \rho_1^{s-1}(a)$$
.

From Lemmas 1 and 3

Lemma 4. For any integer r

$$\rho_1^r(a^{-1}) = (r+1)\rho_{-1}^0(a) - \rho_{-r-1}^0(a)$$
.

2. Let $S=N_0\times G$ and $S'=N_0\times G'$ be cancellative, archimedean, nonpotent, commutative semigroups constructed from indexed groups G with I and G' with I' respectively. Suppose that S is isomorphic upon S' under φ . Let e and e' be the identity elements of G and G' respectively and put $(0,e)\varphi=(n',e'_0)$ and $(0,e')\varphi^{-1}=(n,e_0)$. Since $(0,e')=(n,e_0)\varphi=((0,e_0)(0,e)^n)\varphi$, where we agree that $\alpha\beta^0$ means α for every $\alpha,\beta\in S$, we get

Lemma 5. nn'=0.

We define the symbol $\rho_r^{\prime s}(a')$, $a' \in G'$ as follows:

$$ho_r'^s(a') = \sum_{i=r}^s I'(a', a'^i) \qquad ext{if } s - r \ge 0, \ = 0 \qquad ext{if } s - r = -1, \ = -\sum_{i=s+1}^{r-1} I'(a', a'^i) \quad ext{if } s - r \le -2.$$

Using, then, Lemmas 1, 3, and 4 we get

Lemma 6. Let $(p, e_0^k x)$ and $(p', e_0'^k y')$ be any elements of S and S' respectively. If $(0, x)\varphi = (r, x')$ and $(0, y')\varphi^{-1} = (r', y)$, then

(i) $(p, e_0^k x) \varphi = (r + k + n't + \rho_1'^{t-1}(e_0') + I'(e_0'^t, x'), e_0'^t x'), t = p - nk - \rho_1^{k-1}(e_0) - I(e_0^k, x),$

(ii) $(p', e_0'^{k'}y')\varphi^{-1} = (r'+k'+nt'+\rho_1^{t'-1}(e_0)+I(e_0^{t'}, y), e_0^{t'}y), t'=p'-n'k'-\rho_1'^{k'-1}(e_0')-I'(e_0'^{k'}, y').$

Lemma 7. If h and h' are the orders of e_0 and e'_0 respectively, then it holds that $h=h'n'+\rho'_1{}^{h'}(e'_0)$ and $h'=hn+\rho'_1(e_0)$, where h=0 means that the order of e_0 is infinite and h'=0 does so.

Since $S\varphi = S'$, by Lemma 6, we get

Lemma 8. For any integer s and for any $x \in G$ and $y' \in G'$ it holds that

- (i) $r+s+n't(s)+
 ho_1'^{t(s)-1}(e_0')+I'(e_0'^{t(s)},x')\geq 0, t(s)=-nsho_1^{s-1}(e_0)-I(e_0^s,x)$ and
- (ii) $r'+s+nt'(s)+\rho_1^{t'(s)-1}(e_0)+I(e_0^{t'(s)},y)\geq 0, t'(s)=-n's-\rho_1'^{s-1}(e_0')-I'(e_0'^{s},y'), where (0,x)\varphi=(r,x'), (0,y')\varphi^{-1}=(r',y).$

Lemma 8 is equivalent to the following

Lemma 9. For any integer s and for any $x \in G$ and $y' \in G'$ it holds that

(i)
$$r + \min \left\{ 0, \min_{1 \le s} \left\{ s + n't(s) - \sum_{i=t(s)}^{-1} I'(e'_0, e'^i_0 x') \right\}, \min_{1 \le s} \left\{ -s + n't(-s) + \sum_{i=0}^{t(-s)-1} I'(e'_0, e'^i_0 x') \right\} \right\} \ge 0$$
 and

$$\begin{array}{ll} \text{(ii)} & r' + \min \left\{ 0, \min_{1 \leq s} \left\{ s + nt'(s) - \sum_{i=t'(s)}^{-1} I(e_0, e_0^i y) \right\}, \min_{1 \leq s} \left\{ -s + nt'(-s) + \sum_{i=0}^{t'(-s)-1} I(e_0, e_0^i y) \right\} \right\} \geq 0, \end{array}$$

where $(0, x)\varphi = (r, x'), (0, y')\varphi^{-1} = (r', y).$

We note here that for $s \ge 1$ it holds $t(s) \le 0$, $t(-s) \ge 0$, $t'(s) \le 0$ and $t'(-s) \ge 0$ and we agree that both the symbols $\sum\limits_{i=m}^{m-1} I'(e'_0, e'^i_0 x')$ and $\sum\limits_{i=m}^{m-1} I(e_0, e^i_0 y)$ mean 0. And if the orders of e_0 and e'_0 are $h(\ne 0)$ and $h'(\ne 0)$ respectively, we may restrict the s in (i) of Lemmas 8, 9 as $0 \le s < h$ and the s in (ii) as $0 \le s < h'$ and may cancel the terms

$$\min_{1 \le s} \left\{ -s + n't(-s) + \sum_{i=0}^{t(-s)-1} I'(e'_0, e''_0 x') \right\}$$

in (i),

$$\min_{1 \leq s} \left\{ -s + nt'(-s) + \sum_{i=0}^{t'(-s)-1} I(e_{\scriptscriptstyle 0}, \, e_{\scriptscriptstyle 0}^i y) \right\}$$

in (ii) of Lemma 9.

Moreover we have the following lemmas:

Lemma 10. If $(0, x')\varphi^{-1} = (r, x)$, $r \neq 0$, then $(0, e'_0 = r' x')\varphi^{-1} = (s, x)$ for any integer s such that $0 \leq s \leq r$. And if $(0, y)\varphi = (r', y')$, $r' \neq 0$, then $(0, e''_0 = r' y)\varphi = (s', y')$ for any integer s' such that $0 \leq s' \leq r'$.

Lemma 11. Let $(0, x)\varphi = (0, x')$ and $(0, y)\varphi = (0, y')$. If $xy = e_0^k z$ and $(0, z)\varphi = (0, z')$, then $x'y' = e_0''z'$ and $I'(x', y') = n'k' + k + \rho_{-k'}'(e_0') - I'(e_0'^{-k'}, x'y')$, where $k' = -nk - \rho_{-k}^0(e_0) + I(x, y) + I(e_0^{-k}, xy)$.

Lemma 12. If $(0, e_0^i)\varphi = (0, e_0^{i'})$, then $i = -n'i' + \rho_{i'}^{\prime 0}(e_0')$ and $i' = -ni + \rho_0^0(e_0)$.

From Lemmas 6 and 10 we can easily see that it is possible to choose a representative system Γ of the cosets of the cyclic subgroup $[e_0]$ generated by e_0 in G and a representative system Γ' of the cosets of $[e'_0]$ in G' satisfying the following: for any $x_\alpha \in \Gamma$, there exists $x'_\alpha \in \Gamma'$ such that $(0, x_\alpha)\varphi = (0, x'_\alpha)$.

Now, for these Γ and Γ' , we define a mapping ψ of $G/[e_0]$ into $G'/[e'_0]$ as follows: for $x_\alpha \in \Gamma$ and for $x'_\alpha \in \Gamma'$ such that $(0, x_\alpha)\varphi = (0, x'_\alpha)$ $\psi \colon [e_0] x_\alpha \to [e'_0] x'_\alpha$.

Using Lemma 11, we see that ψ is an isomorphism of $G/[e_0]$ upon $G'/[e'_0]$. Therefore

Lemma 13. $G/\lceil e_0 \rceil$ is isomorphic upon $G'/\lceil e'_0 \rceil$.

3. Summarizing the above lemmas, we get the following:

Theorem. $S=N_0\times G$ is isomorphic upon $S'=N_0\times G'$ if and only if there exist cyclic subgroups $[e_0]$ of G and $[e'_0]$ of G' such that $G/[e_0]$ is isomorphic upon $G'/[e'_0]$ (under ψ) and there exist representative systems $\Gamma=\{x_\alpha\}$ of the cosets of $[e_0]$ in G and $\Gamma'=\{x'_\alpha\}$ of the cosets of $[e'_0]$ in G' satisfying

- (1) for any $x_{\alpha}, x_{\beta} \in \Gamma$, if $x_{\alpha}x_{\beta} = e_{0}^{l}x_{\gamma}, x_{\gamma} \in \Gamma$, then $x_{\alpha}\tau \cdot x_{\beta}\tau = e_{0}^{\prime l'} \cdot x_{\gamma}\tau$ and $I'(x_{\alpha}\tau, x_{\beta}\tau) = n'l' + l + \rho'_{-l'}(e_{0}^{\prime}) I'(e_{0}^{\prime -l'}, x_{\alpha}\tau \cdot x_{\beta}\tau), l' = -nl + I(x_{\alpha}, x_{\beta}) \rho_{-l}^{0}(e_{0}) + I(e_{0}^{-l}, x_{\alpha}x_{\beta}),$
 - (2) for any integer s and for any $x_{\alpha} \in \Gamma$ and $x'_{\beta} \in \Gamma'$
- $(\mathrm{i})\quad s+n't(s)+\rho_1'^{t(s)-1}\!(e_0')+I'(e_0'^{t(s)},\;x_\alpha\tau)\!\geqq\!0,\;t(s)\!=\!-ns-\rho_1^{s-1}\!(e_0)-I(e_0^s,\;x_\alpha)\;\;and$
- $(\text{ii}) \ s + nt'(s) + \rho_1^{t'(s)-1}(e_0) + I(e_0^{t'(s)}, x_\beta'\tau^{-1}) \geqq 0, t'(s) = -n's \rho_1'^{s-1}(e_0') I'(e_0'^s, x_\beta'),$

where τ is a mapping of Γ onto Γ' such that

$$\tau: x_{\alpha} \longrightarrow x'_{\alpha}$$
 if $(\lceil e_0 \rceil x_{\alpha}) \psi = \lceil e'_0 \rceil x'_{\alpha}$

and n, n' are non-negative integers such that nn'=0, n'i'=-i+ $\rho_{i'}^{0}(e'_{0}), ni=-i'+\rho_{i}^{0}(e_{0})$ for $e_{0}^{i}\tau=e_{0}^{\prime i'}, e_{0}^{i}\in\Gamma$.

References

- [1] T. Tamura: Commutative nonpotent archimedean semigroup with cancellation law, I. Jour. of Gakugei, Tokushima Univ., 8, 5-11 (1957).
- [2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, I. Amer. Math. Soc., Providence, R. I. (1961).