46 [Vol. 42,

12. A Duality Theorem for Locally Compact Groups. II

By Nobuhiko TATSUUMA

Department of Mathematics, Kyoto University (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1966)

- 1. Let G be a locally compact group, Ω be the set of all equivalence classes of unitary representations of G. We consider a representative $D = \{U_g^p, \mathfrak{S}^p\}$ of each element in Ω . Denote by $T = \{T(D)\}$ an operator field over Ω , and call T admissible when
 - (1) T(D) is a unitary operator in \mathfrak{D}^D for any D in Ω .
 - (2) $U_1(T(D_1) \oplus T(D_2)) U_1^{-1} = T(D_3),$
 - $(3) U_2(T(D_1) \otimes T(D_2)) U_2^{-1} = T(D_4),$

for arbitrary unitary equivalence relation $U_1(\text{resp. }U_2)$ between $D_1 \oplus D_2(\text{resp. }D_1 \otimes D_2)$ and $D_3(\text{resp. }D_4)$.

In the previous paper [1], we showed,

Proposition. For any admissible operator field T, there exists unique element g in G such that

$$T(D)=U_q^D$$
, for any D in Ω .

The present work is devoted to prove,

Theorem. The assumption (1) about unitarity of T(D) is replaceable by weaker assumption,

- (1') For regular representation R of G, T(R) is a non-zero bounded operator in $L^2(G)$, and T(D) is a closed operator in \mathfrak{S}^D for any D in Ω .
 - 2. Proof of the theorem.

Lemma. Under the assumption (1'),

$$||T(R)|| = 1.$$

In fact, the general theory shows,

$$\parallel T_1 \otimes T_2 \parallel \leq \parallel T_1 \parallel \parallel T_2 \parallel, \ \parallel \sum_{lpha} \oplus T_{lpha} \parallel = \sup_{lpha} \parallel T_{lpha} \parallel.$$

While as shown in [1], $R \otimes R$ is equivalent to a multiple of R, so the conditions (2) and (3) lead us to

$$||T(R)||^2 \ge ||T(R) \otimes T(R)|| = ||T(R)||,$$

then $||T(R)|| \ge 1$, because of $T(R) \ne 0$. If ||T(R)|| = a > 1, there exist $\varepsilon > 0$ such that $(a-\varepsilon)^2 > a$, and a non-zero vector f in $L^2(G)$ such as $||T(R)f|| > (a-\varepsilon)||f||$.

$$||T(R)|| ||f||^2 = ||T(R) \otimes T(R)|| ||f \otimes f|| \ge ||T(R)f \otimes T(R)f|| =$$

= $||T(R)f||^2 > (a - \varepsilon)^2 ||f||^2 > a ||f||^2$.

That contradicts. q.e.d.

The same argument as in [1] concludes T(R) (=T) rises a set transformation of G_{δ} -compact set E to a measurable set T(E) in G, and this map satisfies $\mu(T(E)) \leq \mu(E)$, T(h)T(f) = T(hf), $TL_{g} = L_{g}T$, etc.

From the linearity of T and the relation $T(\chi_E) = \chi_{T(E)}$, it is easy to see

$$T(f) \ge 0$$
, for $f \ge 0$ in $L^2(G)$.

Now we consider a function $h_{\scriptscriptstyle E}$ for $h\in C^+_{\scriptscriptstyle 0}(G)$ and $G_{\scriptscriptstyle \delta}\text{-compact}$ set E, defined by

$$h_{\scriptscriptstyle E}(g) = \int \! h(g_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}) \chi_{\scriptscriptstyle E}(g_{\scriptscriptstyle 1}g) d\mu(g_{\scriptscriptstyle 1})$$
 .

Then

$$\int (1/\mu(E))(Th_E)(g)d\mu(g) = (\mu(T(E))/\mu(E))\int h(g)d\mu(g).$$

If E tends to the set $\{e\}$, then the left hand side converges to $\int (Th)(g)d\mu(g)<+\infty$. This assures the existence of

$$\lim_{E\to\{e\}}(\mu(T(E))/\mu(E))\!=\!c.$$

Put $h=|h_1|^2$ for given h_1 in $C_0(G)$, we get

$$||T(h_1)||^2 = c||h_1||^2$$
.

Since $C_0(G)$ is dense in $L^2(G)$ and ||T||=1, c must be 1 and T is isometric. The proof of proposition 1 in [1] used the fact that T is not unitary but isometric, so the same conclusion is valid in this case too.

It is easy to show, the proof of lemma 2 in [1] is extendable to this case, and combining the result of above discussion, we obtain the proof of the theorem.

Reference

[1] N. Tatsuuma: A duality theorem for locally compact groups. I. Proc. Japan Acad., 41, 878-882 (1965).