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1. In the previous paper [1], we proved a duality theorem for
G=SL(2, R) as follows.

Let 2, be the set of all equivalence classes of irreducible unitary
representations of G, and D={U?, $”} be a representative of each
element in 2, We call an operator field T,={T,(D)} over 2, admi-
sstble when

(1) TyD) is a unitary operator in 9? for any D in 2,.

(2) For any irreducible decomposition SD*dv(l) of D,®D, which
is related by U,

UT(DY® TUDNU = | T(Dax(d.

Under these definitions, the main result of [1] is as follows.

Proposition. For any admzissible operator field T, there exists
unique element g in G such that T(D)=UP for any D in £,

The purpose of this article is to prove the same result for
connected semisimple Lie group G with finite centre.

Concerning to [3] and proof in this article, we can deduce
easily,

Corollary. For connected semisimple Lie group G with finite
centre and without compact factor, there exist finite irreducible
unitary representations {D;}. And the assumption (1) about uni-
tarity of T«(D) is replaced by weaker assumption,

(1) T«D,) is & non-singular bounded operator in Hi, and
T(D)is a closed operator in D for any D in £,

2. Proof of the proposition. Let G be a connected semisimple
Lie group with finite centre. In [5], Harish-Chandra showed such
a G is type I. So any irreducible unitary representation of G is
given as an outer tensor product of irreducible unitary representa-
tions of simple groups which are factors of G. Then it is sufficient
to prove the proposition for such simple Lie groups.

For compact groups, there exists Tannaka’s result [6], which
assures the same proposition in this case. Hence, hereafter we
consider only a non-compact connected simple Lie group G with
finite centre Z(G).
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While in general, let R~R'=\Ddo(2) be an irreducible decom-

position of the regular representation of type I group G, this de-
composition is unique up to unitary equivalence. Now, for given
admissible operator field T,={T(D)}, if we can prove the integrability
of {Ty(D)} with respect to o, that is, that {T(D)v(D)} is in ¥ for
any vector {v(D)} in ¥, then the unique extension T (R) of T, on
HE is defined as an operator corresponding to TW(R')=\T(Dda(2).

The unitary property of T, leads the unitarity of T,(R) and uni-
formly boundedness of T, over the components of R results the
boundedness of T(R).

It is easy to see T(R) satisfies the conditions of the proposition
1 and lemma 2 in [2], so from the results of [2], we obtain the
proof of the proposition immediately.

In the other hand, we consider 27 the family of equivalence
classes of unitary representations of G which consists of sub-
representations of Kronecker products with finite multiplicity of
elements of 2, and their finite direct sums,

Lemma., Q7 contains the equivalence class of R, for non-
compact connected simple Lie group G with finite centre,

This lemma means that R is representable as a subrepresentation
of I®WDi®---®D;) (Die,). So using the condition (2) of admi-
ssibjility, {T((D)} is integrable with respect to ¢ as a projection of
SO(T(D)® - - @ Ty(D;)). And if we replace the unitarity of 7,
to the boundedness of these finite operators {T(Dj)}, the uniformly
boundedness of 7,={T,(D)} over the components of R follows.

3. Proof of the lemma. F, Bruhat [7] gave a family of irre-
ducible representations D of G, which are induced by representations
7 of proper subgroup I" of G, as follows,

i) According to Iwasawa decomposition KHN of G, put M the
centralizer of H in K (M contains Z(G)). And put

I'=MHN.,

ii) For a character ¢ of H such that ¢*#¢ (for any Weyl
transformation s), and any irreducible unitary representation ¢ of
M, put t(v)=t(mhn)=¢(h)a(m) for y=mhn in I"'yme M, he H,ne N.

Applying the Frobenius’ theorem on induced representations, to
M and Z(G), we can select finite 7; (1<j=t) such that the restric-
tion of >1®7; to Z(G) contains the regular representation of Z(G)

as a component, Consider DO—E@DJ, in which D, is the induced
representatlon by 7;, then D, is mduced representation of G by 7,=
2@2‘ And the restriction of multiple 7,®«--®7, to Z(G) contains
the regular representation of Z(G).
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We shall show that for any ¢=(2dim ")+ 2, t-multiple D,® - - - ®.D,
contains a subrepresentation which is equivalent to the regular repre-
sentation R of G.

In fact, we apply Mackey’s results ([8], Th., 12.1) which de-
compose products of induced representations, and get if two sub-

t t

— ~ —
groups I'X---xI'(=I") and G,={(g,---,9)} in GX.--xG(=G
are regularly related, then the ¢t-multiple D,® - --®D, is equivalent to
[ D@EI® - ©,(20); @)@,
reg\t/a¢
where g=(g,, -+, 9,) runs over the set of representatives of these
double cosets, and v is a measure over I'\G*/G, such that a double
cosetwise set in G' is a null set with respect to the Haar measure
1t of Gt if and only if its canonical image in I"\G!/G, is a v-null
set, D(9(t)® -+ -®g,(7,); I''(9)) shows the induced representation
of G by the restriction of ¢,(7))® - - ®9.7,) (9:(ze)={U"(g;7;;"), H™},
a representation of the group ¢;7'I'g;), to I''(§)=g9:'l'9.N---Ng:'[g,.

Because of that ¢,(z)® -+ ®9(70) |z ~T®**+®7Ty|z contains
the regular representation of Z(G), the proof is reduced to show
the following,

1) I, G, are regularly related in G,

2) For t=(2dimI")+2, the set F'={g': I'(§*)=Z(G)} is p'-measure
positive in G,

The proof of 1) is given in the previous paper [4], so we shall
prove that 2) is true.

4. At first, we consider G~G, as a transformation group over
I'\G', then the isotropy group of coset m containing (§")=(g,, -+ -, 9,)
is I'(§"). As shown in [9] (p. 135), dim /"(§") is a upper semi-
continuous funection over G*, so E={§: dim I"'Y(§")=0} is an open set
in G, E is non-empty for I=(dim I")+1. In fact, for arbitrarily
given two proper closed subgroups K, K, in G, let N(K,, K,)=
{9€G:dim K,=dim (K, N g~ K,9)}={g € G: f,C(ad g)t,}, where f; is the
Lie algebra of K;. Obviously N(K,, K,) is closed, and the simplicity
of G assures N(K,, K,)+G. That is, G(K,, K,))=G—N(K,, K,) is a
non-empty open set in G, and for any g in G(K,, K,), dim (K, N g K,9)<
dim K;,. We take g, in G, and next g, in Gygi‘ g, '), g; in
G(9:'I'9,Ng:'I'g,, I') and so on, finally we get §'=(g;, -+, ¢;) in G*
for I=(dim I")+1, and dim 7"%(§")=0. That is E+4.

We put E'={§""'=(gy, -+ -, 91-1): (91, * **, 911, €) € E} in G'*, then
E’ is a non-empty open set and dim (/4§ )N I")=0 for any §' ‘e E’'.
Especially, p~'({g*'=(g%, §""):§'c E, §"*e E'})=+0.

Next we consider N(g;, 9.)={g€G: 9,=97'9,9}, for g, 9, in G,
then N(g,, 9.)=9,8(g9,) for any g, in N(g,, g,) and the centralizer
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C(g,) of 9,. Il.e., if one of g,, g, is not in Z(G), then p(N(g,, g.))=0.

For discrete (therefore countable) subgroup 7"(§"), and I"-%(§" )N
I',g'eE,§'*e E', the set N,={ge G: I"(§*)=Z(G), §"=(§', 5" "9, 9)}
is covered by countable sum of N(g,, g.), in which g, € I''(§")— Z(G),
g€ 'Y g" YN —Z(G), so #(N,)=0. Consequently, for any §'ec E,
and §i—te E’, I''(§*)=Z(G), for almost all g.

It is easy to see that F,={§*: I"*(§*)=Z(G)} is measurable in G¥,
therefore F={g"=(g,, + -+, 01, 91:195", * * *, GuisFai"y 920): (91, * * +, gur) € F1}
is measurable too. And the above discussions conclude p*(FY)+0,
so p(F,)=#0.

For t>21, since ]"t(g‘t)zl"ﬂ(g‘ﬂ) n[‘t—-ﬂ(g\t—-ﬂ):Z(G)ﬂ[’t——?l(gt—ﬂ)z
Z(@), where §'=(g%*, §* %), §* € F,, § % € G, the result is immediate.

The corollary follows from the boundedness of T'(R) based on
the boundedness of {T'(D;)} and proposition in [3].
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