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1. The object of this paper is to prove the following two
theorems:

Theorem 1. If (i)f is even, (ii) f*f(u)du-o( as --0 and

(iii) for some >0, there is an ](1>]>0) such that

6)(t)-- ]dO(u) I-O(t-’) as

where O(u)--u-’f(u), then the Fourier series of f converges at the
origin.

Theorem 2. If f is continuous and is of bounded variation
and if there is an 0 such that (i) t-’w(t) >A0 as t-,O and (ii)

O(t)- dO(u)[-O(t-’w(t)) as t-O

uniformly for all x, where O(u)=u-’(u), then

]s,(x; f)-f(x) <=Aw(1/n) for all x.
2. Proof of Theorem 1. It is sufficient to prove that

sin nts-- f(t) dr--o(1) as n-,
t

where / is a fixed constant. We write s- + -I+I, where

k is fixed but a large number. Then I=o(1) as n-. By the
assumption, f(u)is of bounded variation on the interval (k/n, ), and
then IL <- V/n, where V is the total variation of the function f(t)/t
on the interval (k/n, ). Hence it is sufficient to show that V=o(n).
Since f(t)/t=0(t)/t-’, the required relation is that, for any given e
and a suitable k,

d <sn.

No that

f(/)=0 and then

I (O(t)) f IdO(t) I It(t)d < + .dr
1! t-" --kl t- kl t-<-- t-" J t - dt-<-

k < n"
This gives the required relation. Thus we get the theorem.
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We have the following corollary which is a generalization of a
theorem of Tomic 1.

Corollary 1. If f is even, positive and continuous a he origin
and here is an 0 such ha -’f() is decreasing on $he righ
neighbouvhood of $he ovigin, hen $he Fouviev sevies off converges
a he origin.

For, O()--’f() is decreasing and then
($) 0($) 0(fi) $-’f($) -’f(fi)= O($-’),

since f is bounded in the neighbourhood of the origin. Hence the
condition (iii) is satisfied. Thus we get the theorem.

3. Proof of Theorem 2. We can suppose that f is not constant,
since the theorem is trivial when f is constant. We write

1 (I+L).

If w(h)-o(h) as h0, then f is constant, so that 1/n=O(w(1/n))
as n. Hence I V/n-O(1/n)--O(w(1/n)), where V is the total

variation of 9($)/2 sin $/2 over (, ). We write I=-’ -+ -I+I,
J J/

hen

[I l 9($)D($) d$An 9($) dAw(1/n)

and

I- 9(t) sin (n+ 1/2)tdt
2 sin /2

[1 1]sin(n+l/2)d**.9($) sin (n+l/2)td$+ ,9,($) 2sint/2--
I+I,

where I--O(1/n)--O(w(1/n)), since I is the n-th Fourier coefficient
of bounded variation whose total variation is less that a constant.
]L V/n where V is the total variation of the function 9,(u)/u=
O(u)/u- over the interval (l/n, ). It is sufficient to show that
V-O(nw(1/n)). Now

i/ ti-’ il ti-’ I t

&A+An(1/n)+ An’- An(1/n)
whieh is the required. Thus we ge he heorem.

As a special ease, we ge the following corollary which is a
eneralizaion of Tomie’s lheorem
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Corollary 2. If f is continuous and is of bounded variation
and if, for any x, there is an 0 such that t’(t) is positive,
decreasing (or negative increasing) in the right neighbourhood of
=0, then s(x; f)-f(x) Aw(1/n).
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