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97. Ideals and Homomorphisms in Some Near-Algebras

By Sadayuki YAMAMURO
(Comm. by Kinjiré6 KunNuGi, M.J.A., May 12, 1966)

§1. A real vector space A is called a near-algebra if, for any
pair of elements f and ¢ in A, the product fg is defined and satisfies
the following two conditions:

1) (foh=flgh); (2) (f+9h=rfh+gh for f, g, and h in .

The left distributive law: h(f+g)=hf+hg is not assumed.
Therefore, a near-algebra is a near-ring which has been defined in
[6, pp. T1-74].

Let E be a real Banach space. Let f and g be mappings of E
into E, We define the linear combination «f + Bg (@ and S are real
numbers) by

(af+Bg) (x)=af(x)+Bg(x) for every xc K,
and the product fg by
(f9) (®)=f(g(x)) for every xe E.

Let A be a near-algebra of mappings of E into E. A subset
I of A is said to be an tdeal if it satisfies the following two condi-
tions:

1) I is a linear subset of A;

(2) fel, gedl imply fg, gfe L

The ideals of distributively generated near-rings have been
studied by [2] and [3]. Obviously, near-algebras of mappings on
Banach spaces are, in general, not distributively generated.

Examples (cf. [4] and [5]). 1. A mapping f of E into E is
said to be constant tf

flx) =a for every xec FE
for a fixed element a € E. We denote this mapping f by ¢,. Since
Ac,+BC=Cogrp aNd  C,0,=C,,

the set I(F) of all constant mappings on E is a near-algebra, It is
obvious that, if a near-algebra A contains I(F), I(E) is a minimal
ideal of .4, and that .4 has no proper non-zero ideal if and only if
A = I(E).

2. Let 4 be a near-algebra whose elements are bounded
(transform every bounded set into a bounded set) and continuous
mappings of E into E. Then, the set 4(C) of compact (transform

every bounded set into a compact set) and continuous mappings in
J is an ideal of A.

§2. Let I be an ideal of a near-algebra 4. Let us write
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f~g(I) if f—gel. Then, this relation satisfies

1) f~g() implies f+h~g+h(l) for any he A;

@) f~g(I) implies fh~gh(I) for any he A.

However, this relation does not satisfy the following condition:

(8) f~g(I) implies hf~hg(I) for any he A.

In [1], it was shown that this relation satisfies the conditions
1), (2), and (8) if and only if the set I satisfies the following three
conditions:

Q) I is a linear subset of A

@) fel, ged imply fgel;

@) fel, g, he A imply g(f + h)—ghel,

A subset I which satisfies these three conditions is called an
NA-ideal.

Example (cf. [4] and [5]). 1. Let 1 be a near-algebra of
all bounded and continuous mappings on E., The set I(E) defined
in the previous section is not an NA-ideal of (4, although it is a
minimal ideal of A.

2. A mapping f of E into E is said to be (Fréchet-) differentiable
if, for any a € E, there exists a bounded linear mapping ! of E into
E such that
fla+x)—fla)=l(x)+r(a, x) for every xc E where “131{110/"_(1%6’—]—1@:
This linear mapping ! may depends on a and is denoted by f'(a).
Let 4 be the set of all differentiable mappings f such that f(0)=0.
Then, ./ is a near-algebra and the set {fecA|f'(0)=0} is an NA-
ideal of A.

The purpose of this paper is to make clear the relation between
these two kinds of ideals. We continue to assume that E is a
Banach space, although the discussions involved are sometimes purely
algebraic.

§3. We begin with a lemma which plays an important role in
the following discussions. In the sequel, we denote by L the Banach
algebra of all bounded linear mappings on K,

Lemma 1. Let A be a near-algebra of mappings on E. If
ADL, then we have either ADI(E) or f(0)=0 for every fe .

Proof. We prove that, if there exists an element fe /[ such
that

f(0)=a+0,
then I(E)c A. At first, if f satisfies this condition, then ¢, € 4,
because
c(x)=a=f(0)=f0(x) for every xe€ E,
which means that ¢,=f0.
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Next, let b be an arbitrary non-zero element. Then, the linear
mapping bQa& which is defined by
_ (b®a) (W)=a@),
where @ € £ (the conjugate space of F) satisfies @(a)=1, is contained
in J and
cy(2)=b=(bQa) (a)=(bRX)c,(x) for every xe K,
hence it follows that ¢,=(bRa)c, € A.

Now, we can prove the following theorem.

Theorem 1. Let A be a near-algebra of mappings on EH. If
ADL, then every NA-ideal is an ideal.

Proof. Let I be an NA-ideal. We have only to prove that
gfel if fel and ge .

Since I is an NA-ideal,

9(f+h)—ghelif feland g, he .
Putting =0, we have
gf—g0el.,
Since I is a linear subset, we have only to prove that g0e I,

(i) If f(0)=0 for every fe A, then g0=0¢e1,

(i) If ADI(E) and g(0)=b=0, since ¢,=¢0, we have only to
prove that ¢, € I. Now, for a non-zero element fel, there exists
y € E such that

i f)=a=0,
Let us take @ e £ such that @(a)=1. Then, for the bounded linear
mapping bX&, we have
6= (bQa)c,=(bQa) (¢;+¢.) — (bQa)c, € 1,
because ¢,=fe, € I.
Therefore, by Lemma 1, the proof is completed.

As we have mentioned in the second section, an ideal is not
necessarily an NA-ideal. Then, in what cases is every ideal an
NA-ideal? It is clear that, in the (near) algebra L, every ideal is
an NA-ideal. We have another near-algebra of this kind. Let us
consider the set

L+I(E)={l+¢,|le L and acFE}.
Under the definitions of sum and product given in the first section,
this is a near-algebra. Since the left distributive law is still not
satisfied, this is not an algebra. Let I be an ideal of this near-
algebra L+ I(E). Then, for
l+c,el and Il;+e¢,, € L+I(E)(i=1,2), we have
(hte) () + (o)) —(ltes,) (lates,)
=1t )+ Ll )+ 05, — L (o 04) — 6,
=lL(l+e)el,
hence it follows that, in L+I(E), every ideal is an NA-ideal,
Conversely, we can prove the following theorem.
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Theorem 2. Let A be a near-algebra of bounded mappings
on E such that ADL. If every ideal is an NA-ideal and I(E)C A,
then A=L+I(E).

Proof. Since I(E) is an ideal, it is an NA-ideal. Let f be an
arbitrary element of 4. Then, by the definition of NA-ideals, we
have

fg+e,)—fge I(E) for every ac E and ge A.
Since ADL, we can replace g by the identity mapping, and we
have that
fz+a)—f(w)
is constant with respect to . Putting x=0, we have
f@)=f(x+a)—f(a)+ f(0) for every xz€ E,
which means that
S=Ffotero
where f,(x)=f(z+a)—f(a).
Therefore, we have only to prove that f, is linear. To prove this,
we shall make use of the following equation:
fw+y)=F(®)+f(y)—f0) for every x, ye k.
Now,
flx+y)=f(z+y+a)—fla)
=fle+y)—f(0)
= f(@)+ f(y)—2(0)
=(f(%) —S(0))+ (f(y) —f(0))
=(f(z+a)—fa)+(fy+a)—f(a))
=fu(®)+fu(y).

§ 4. It is natural to conjecture that, if (i) ADL, (ii) f(0)=0
for every fe J and (iii) every ideal is an NA-ideal, we have A=
L. However, in the case when f(0)=0 for every fe .4, we can not
make use of the set I(E) which played an essential role in the proof
of Theorem 2. A standard method to prove this conjecture may be
to construct a new near-algebra A+ I(E) (the direct sum); from
A+IE)=L+I(E) it easily follows that =L. This method,
however, does not serve for our purpose, because, even if the near-
algebra / satisfies the condition that every ideal is an NA-ideal,
A+ I(E) does not always satisfy this condition.

Here, we can only give a partial result. We need a lemma.

Lemma 2. Let A be a near-algebra of differentiable mappings
on a Banach space E. If A>DL, then A=L+D, where D,=
{fe A f(0)=0}; in other words, for any fe€ A there exists uniquely
a pair of elements ly;€ L and f,e D, such that f=1:+f..

Proof. For any fe 4, we have

S=F(0)+(f—F(0)
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where f’(0)e L and (f—f"(0))(0)=,'(0)—f"(0)=0. If f=1,+f, where
lye L and f,e D, we have

F'O)=s+f0)(0)=10)+ 5 (0)=13(0)=1,.
Therefore, this expression is unique.

A linear subset I of a near-algebra 4 is called a left ideal if
gfel whenever feI and ge 4. A linear subset I of .1 is called
a left NA-ideal if g(f+h)—ghe I whenever g, he J and fel.

Theorem 4. Let A be a near-algebra of differentiable mapp-
ings on & Banach space E. If ADL, f(0)=0 for every feJ and
every left ideal is a left NA-ideal, then JA=L.

Proof. Let us consider the following set:

D,={fe | f'(a)=0},

which is obviously a left ideal of 4. Then it follows from our
assumption that

g(f+h)—ghe D, whenever g, he and feD,,
which means that, putting A=1 (the identity mapping),

g'(fla)+a) (f'(@)+1)—g'(a)=0.

Since f’(a)=0, we have

9'(fla)+a)=g'(a) whenever ge .4 and feD,.

(1) Let us assume that there exist an element f,e D, and an
element ac E such that f,(a)+#0. Let us take @c E such that
a(fo(a@))=1. Then, for any element be E, we have (bQa)f,€ D,,
where b®a is a linear mapping which is defined by (bQ@) (x)=a(x)b
for every x. Therefore, putting f=(bXa)f, since (bRa)f(a)=>b,
we have

g (b+a)=g'(a) for every beH,
which means that ¢'(x) is constant with respect to xe€ E, or,
equivalently, ¢ is a linear mapping. Since g is an arbitrary element
of J, we have =L,

(2) Let us assume that, for any x€ E, we have f(x)=0 for
every feD,. Then, since f—f'(x)e D,, we have

f@)=f"(x) (x) for every xzecE and fe.
Now, let us take an arbitrary @< E and consider the functional
o(t)=a(f(tx)).
Then, since
(O)=a('(tw) (2)= T a(F(t)= 1 0(¢),

we have that @(t)=ct for every real number ¢ and for some constant
¢. Therefore, we have
a(f(tx))=ta( f(x)),
which implies that
fix)=tf(x) for every x€E and number ¢,
because @ is an arbitrary element of E, Now, from Lemma 2 it
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follows that
0=75(0) (%)
_hm f,,(tx)/t—hm (f(tx)—1s(tx))/t
_f(oc) L4(x) for every xc€klH,
which means that f=1I,e L. Thus the proof is completed.
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