No. 5]

97. Ideals and Homomorphisms in Some Near-Algebras

By Sadayuki Yamamuro

(Comm. by Kinjirô Kunugi, M.J.A., May 12, 1966)

- §1. A real vector space \mathcal{A} is called a *near-algebra* if, for any pair of elements f and g in \mathcal{A} , the product fg is defined and satisfies the following two conditions:
- (1) (fg)h = f(gh); (2) (f+g)h = fh+gh for f, g, and h in \mathcal{A} . The left distributive law: h(f+g) = hf + hg is not assumed. Therefore, a near-algebra is a *near-ring* which has been defined in $\lceil 6 \rceil$, pp. 71-74 \rceil .

Let E be a real Banach space. Let f and g be mappings of E into E. We define the linear combination $\alpha f + \beta g$ (α and β are real numbers) by

$$(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$$
 for every $x \in E$,

and the product fg by

$$(fg)(x)=f(g(x))$$
 for every $x \in E$.

Let \mathcal{A} be a near-algebra of mappings of E into E. A subset I of \mathcal{A} is said to be an ideal if it satisfies the following two conditions:

- (1) I is a linear subset of A;
- (2) $f \in I$, $g \in \mathcal{A}$ imply fg, $gf \in I$.

The ideals of *distributively generated* near-rings have been studied by [2] and [3]. Obviously, near-algebras of mappings on Banach spaces are, in general, not distributively generated.

Examples (cf. [4] and [5]). 1. A mapping f of E into E is said to be *constant* if

$$f(x) = a$$
 for every $x \in E$

for a fixed element $a \in E$. We denote this mapping f by c_a . Since

$$\alpha c_a + \beta c_b = c_{\alpha a + \beta b}$$
 and $c_a c_b = c_a$,

the set I(E) of all constant mappings on E is a near-algebra. It is obvious that, if a near-algebra \mathcal{A} contains I(E), I(E) is a minimal ideal of \mathcal{A} , and that \mathcal{A} has no proper non-zero ideal if and only if $\mathcal{A} = I(E)$.

- 2. Let \mathcal{A} be a near-algebra whose elements are bounded (transform every bounded set into a bounded set) and continuous mappings of E into E. Then, the set $\mathcal{A}(C)$ of compact (transform every bounded set into a compact set) and continuous mappings in \mathcal{A} is an ideal of \mathcal{A} .
 - § 2. Let I be an ideal of a near-algebra \mathcal{A} . Let us write

- $f \sim g(I)$ if $f g \in I$. Then, this relation satisfies
 - (1) $f \sim g(I)$ implies $f + h \sim g + h(I)$ for any $h \in \mathcal{A}$;
 - (2) $f \sim g(I)$ implies $fh \sim gh(I)$ for any $h \in \mathcal{A}$.

However, this relation does not satisfy the following condition:

- (3) $f \sim g(I)$ implies $hf \sim hg(I)$ for any $h \in \mathcal{A}$.
- In [1], it was shown that this relation satisfies the conditions (1), (2), and (3) if and only if the set I satisfies the following three conditions:
 - (1) I is a linear subset of \mathcal{A} ;
 - (2) $f \in I$, $g \in \mathcal{A}$ imply $fg \in I$;
 - (3) $f \in I$, g, $h \in \mathcal{A}$ imply $g(f + h) gh \in I$.

A subset I which satisfies these three conditions is called an NA-ideal.

Example (cf. [4] and [5]). 1. Let \mathcal{A} be a near-algebra of all bounded and continuous mappings on E. The set I(E) defined in the previous section is not an NA-ideal of \mathcal{A} , although it is a minimal ideal of \mathcal{A} .

2. A mapping f of E into E is said to be (Fréchet-) differentiable if, for any $a \in E$, there exists a bounded linear mapping l of E into E such that

$$f(a+x)-f(a)=l(x)+r(a, x) \ \ {
m for \ every} \ \ x\in E \ \ {
m where} \ \lim_{||x||\to 0} rac{r(a, x)}{||x||}=0.$$

This linear mapping l may depends on a and is denoted by f'(a). Let \mathcal{A} be the set of all differentiable mappings f such that f(0)=0. Then, \mathcal{A} is a near-algebra and the set $\{f \in \mathcal{A} \mid f'(0)=0\}$ is an NA-ideal of \mathcal{A} .

The purpose of this paper is to make clear the relation between these two kinds of ideals. We continue to assume that E is a Banach space, although the discussions involved are sometimes purely algebraic.

§ 3. We begin with a lemma which plays an important rôle in the following discussions. In the sequel, we denote by L the Banach algebra of all bounded linear mappings on E.

Lemma 1. Let \mathcal{A} be a near-algebra of mappings on E. If $\mathcal{A} \supset L$, then we have either $\mathcal{A} \supset I(E)$ or f(0)=0 for every $f \in \mathcal{A}$.

Proof. We prove that, if there exists an element $f \in \mathcal{A}$ such that

$$f(0)=a\neq 0,$$

then $I(E) \subset \mathcal{A}$. At first, if f satisfies this condition, then $c_a \in \mathcal{A}$, because

$$c_a(x) = a = f(0) = f(0)$$
 for every $x \in E$,

which means that $c_a = f0$.

Next, let b be an arbitrary non-zero element. Then, the linear mapping $b \otimes \bar{a}$ which is defined by

$$(b \otimes \bar{a})(x) = \bar{a}(x)b$$
,

where $\bar{a} \in \bar{E}$ (the conjugate space of E) satisfies $\bar{a}(a)=1$, is contained in \mathcal{A} and

$$c_b(x) = b = (b \otimes \overline{a}) (a) = (b \otimes \overline{a}) c_a(x)$$
 for every $x \in E$,

hence it follows that $c_b = (b \otimes \bar{a})c_a \in \mathcal{A}$.

Now, we can prove the following theorem.

Theorem 1. Let \mathcal{A} be a near-algebra of mappings on E. If $\mathcal{A} \supset L$, then every NA-ideal is an ideal.

Proof. Let I be an NA-ideal. We have only to prove that $gf \in I$ if $f \in I$ and $g \in \mathcal{A}$.

Since I is an NA-ideal,

$$g(f+h)-gh \in I$$
 if $f \in I$ and $g, h \in \mathcal{A}$.

Putting h=0, we have

$$gf-g0 \in I$$
.

Since I is a linear subset, we have only to prove that $g0 \in I$.

- (i) If f(0)=0 for every $f \in \mathcal{A}$, then $g0=0 \in I$.
- (ii) If $\mathcal{A}\supset I(E)$ and $g(0)=b\neq 0$, since $c_b=g0$, we have only to prove that $c_b\in I$. Now, for a non-zero element $f\in I$, there exists $y\in E$ such that

$$f(y) = a \neq 0$$
.

Let us take $\bar{a} \in \bar{E}$ such that $\bar{a}(a)=1$. Then, for the bounded linear mapping $b \otimes \bar{a}$, we have

$$c_b = (b \otimes \bar{a})c_a = (b \otimes \bar{a})(c_b + c_a) - (b \otimes \bar{a})c_b \in I$$

because $c_a = fc_y \in I$.

Therefore, by Lemma 1, the proof is completed.

As we have mentioned in the second section, an ideal is not necessarily an NA-ideal. Then, in what cases is every ideal an NA-ideal? It is clear that, in the (near) algebra L, every ideal is an NA-ideal. We have another near-algebra of this kind. Let us consider the set

$$L+I(E)=\{l+c_a\mid l\in L \text{ and } a\in E\}.$$

Under the definitions of sum and product given in the first section, this is a near-algebra. Since the left distributive law is still not satisfied, this is not an algebra. Let I be an ideal of this near-algebra L+I(E). Then, for

$$egin{aligned} l+c_a &\in I \quad ext{and} \quad l_i+c_{b_i} &\in L+I(E) \ (i=1,2), \ ext{we have} \\ &\quad (l_1+c_{b_1}) \left((l+c_a)+(l_2+c_{b_2})\right)-(l_1+c_{b_1}) \ (l_2+c_{b_2}) \\ &= l_1(l+c_a)+l_1(l_2+c_{b_2})+c_{b_1}-l_1(l_2+c_{b_2})-c_{b_1} \\ &= l_1(l+c_a) &\in I, \end{aligned}$$

hence it follows that, in L+I(E), every ideal is an NA-ideal. Conversely, we can prove the following theorem.

Theorem 2. Let \mathcal{A} be a near-algebra of bounded mappings on E such that $\mathcal{A}\supset L$. If every ideal is an NA-ideal and $I(E)\subset \mathcal{A}$, then $\mathcal{A}=L+I(E)$.

Proof. Since I(E) is an ideal, it is an NA-ideal. Let f be an arbitrary element of \mathcal{A} . Then, by the definition of NA-ideals, we have

 $f(g+c_a)-fg\in I(E)$ for every $a\in E$ and $g\in \mathcal{A}$.

Since $\mathcal{A} \supset L$, we can replace g by the identity mapping, and we have that

$$f(x+a)-f(x)$$

is constant with respect to x. Putting x=0, we have

$$f(x)=f(x+a)-f(a)+f(0)$$
 for every $x \in E$,

which means that

$$f = f_a + c_{f(0)}$$

where $f_a(x) = f(x+a) - f(a)$.

Therefore, we have only to prove that f_a is linear. To prove this, we shall make use of the following equation:

$$f(x+y)=f(x)+f(y)-f(0)$$
 for every $x, y \in E$.

Now.

$$\begin{split} f_a(x+y) &= f(x+y+a) - f(a) \\ &= f(x+y) - f(0) \\ &= f(x) + f(y) - 2f(0) \\ &= (f(x) - f(0)) + (f(y) - f(0)) \\ &= (f(x+a) - f(a)) + (f(y+a) - f(a)) \\ &= f_a(x) + f_a(y). \end{split}$$

§ 4. It is natural to conjecture that, if (i) $\mathcal{A}\supset L$, (ii) f(0)=0 for every $f\in\mathcal{A}$ and (iii) every ideal is an NA-ideal, we have $\mathcal{A}=L$. However, in the case when f(0)=0 for every $f\in\mathcal{A}$, we can not make use of the set I(E) which played an essential rôle in the proof of Theorem 2. A standard method to prove this conjecture may be to construct a new near-algebra $\mathcal{A}+I(E)$ (the direct sum); from $\mathcal{A}+I(E)=L+I(E)$ it easily follows that $\mathcal{A}=L$. This method, however, does not serve for our purpose, because, even if the near-algebra \mathcal{A} satisfies the condition that every ideal is an NA-ideal, $\mathcal{A}+I(E)$ does not always satisfy this condition.

Here, we can only give a partial result. We need a lemma.

Lemma 2. Let \mathcal{A} be a near-algebra of differentiable mappings on a Banach space E. If $\mathcal{A} \supset L$, then $\mathcal{A} = L + D_0$, where $D_0 = \{f \in \mathcal{A} \mid f'(0) = 0\}$; in other words, for any $f \in \mathcal{A}$ there exists uniquely a pair of elements $l_f \in L$ and $f_0 \in D_0$ such that $f = l_f + f_0$.

Proof. For any $f \in \mathcal{A}$, we have

$$f = f'(0) + (f - f'(0))$$

where $f'(0) \in L$ and (f-f'(0))'(0)=f'(0)-f'(0)=0. If $f=l_f+f_0$ where $l_f \in L$ and $f_0 \in D_0$, we have

$$f'(0) = (l_f + f_0)'(0) = l'_f(0) + f'_0(0) = l'_f(0) = l_f$$

Therefore, this expression is unique.

A linear subset I of a near-algebra \mathcal{A} is called a *left ideal* if $gf \in I$ whenever $f \in I$ and $g \in \mathcal{A}$. A linear subset I of \mathcal{A} is called a *left NA-ideal* if $g(f+h)-gh \in I$ whenever $g, h \in \mathcal{A}$ and $f \in I$.

Theorem 4. Let \mathcal{A} be a near-algebra of differentiable mappings on a Banach space E. If $\mathcal{A} \supset L$, f(0)=0 for every $f \in \mathcal{A}$ and every left ideal is a left NA-ideal, then $\mathcal{A}=L$.

Proof. Let us consider the following set:

$$D_a = \{ f \in \mathcal{A} \mid f'(a) = 0 \},$$

which is obviously a left ideal of \mathcal{A} . Then it follows from our assumption that

 $g(f+h)-gh\in D_a \quad \text{whenever} \quad g,\ h\in\mathcal{A} \quad \text{and} \quad f\in D_a,$ which means that, putting $h\!=\!1$ (the identity mapping),

$$g'(f(a)+a)(f'(a)+1)-g'(a)=0$$
.

Since f'(a)=0, we have

$$g'(f(a)+a)=g'(a)$$
 whenever $g \in \mathcal{A}$ and $f \in D_a$.

(1) Let us assume that there exist an element $f_0 \in D_a$ and an element $a \in E$ such that $f_0(a) \neq 0$. Let us take $\overline{a} \in \overline{E}$ such that $\overline{a}(f_0(a)) = 1$. Then, for any element $b \in E$, we have $(b \otimes \overline{a}) f_0 \in D_a$, where $b \otimes \overline{a}$ is a linear mapping which is defined by $(b \otimes \overline{a}) (x) = \overline{a}(x)b$ for every x. Therefore, putting $f = (b \otimes \overline{a}) f_0$, since $(b \otimes \overline{a}) f_0(a) = b$, we have

$$g'(b+a)=g'(a)$$
 for every $b \in E$,

which means that g'(x) is constant with respect to $x \in E$, or, equivalently, g is a linear mapping. Since g is an arbitrary element of \mathcal{A} , we have $\mathcal{A} = L$.

(2) Let us assume that, for any $x \in E$, we have f(x)=0 for every $f \in D_x$. Then, since $f-f'(x) \in D_x$, we have

$$f(x)=f'(x)(x)$$
 for every $x \in E$ and $f \in \mathcal{A}$.

Now, let us take an arbitrary $\bar{a} \in \bar{E}$ and consider the functional

$$\Phi(t) = \bar{a}(f(tx)).$$

Then, since

$$\Phi'(t) = \overline{a}(f'(tx)(x)) = \frac{1}{t}\overline{a}(f(tx)) = \frac{1}{t}\Phi(t),$$

we have that $\Phi(t) = ct$ for every real number t and for some constant c. Therefore, we have

$$\bar{a}(f(tx)) = t\bar{a}(f(x)),$$

which implies that

f(tx)=tf(x) for every $x \in E$ and number t, because \bar{a} is an arbitrary element of \bar{E} . Now, from Lemma 2 it

follows that

$$egin{aligned} 0 = & f_0'(0) \ (x) \ = & \lim_{t o 0} f_0(tx)/t = & \lim_{t o 0} \left(f(tx) - l_f(tx) \right)/t \ = & f(x) - l_f(x) \quad \text{for every} \quad x \in E, \end{aligned}$$

which means that $f=l_f \in L$. Thus the proof is completed.

References

- [1] D. W. Blackett: Simple and semi-simple near-rings. Proc. Amer. Math. Soc., 4, 772-785 (1953).
- [2] A. Fröhlich: Distributively generated near-rings (I, Ideal theory). Proc. London Math. Soc., (3) 8, 76-94 (1958).
- [3] H. Neumann: On varieties of groups and their associated near-rings. Math. Zeit., 65, 36-69 (1956).
- [4] S. Yamamuro: On the spaces of mappings on Banach spaces (to appear on Journ. Australian Math. Soc.).
- [5] —: On near-algebras of mappings on Banach spaces. Proc. Japan Acad., 41, 889-892 (1965).
- [6] H. Zassenhaus: Lehrbuch der Gruppentheorie (1937).