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97. Ideals and Homomorphisms in Some Near.Algebras

By Sadayuki YAMAMUR0

(Comm. by Kinjir5 KuNuGI, M.J.A., May 12, 1966)

1. A real vector space is called a near-algebra if, for any
pair of elements f and g in //, the product fg is defined and satisfies
the following two conditions:

(1) (fg)h=f(gh); (2) (f/ g)h=fh/ gh for f, g, and h in /.
The left distributive law:h(f+g)=hf+hg is not assumed.

Therefore, a near-algebra is a near-ring which has been defined in
6, pp. 71-74.

Let E be a real Banach space. Let f and g be mappings of E
into E. We define the linear combination af / g (a and are real
numbers) by

((xf+ g) (x)=of(x)+ g(x) for every x e E,
and the product fg by

(fg) (x)=f(g(x)) for every x e E.
Let // be a near-algebra of mappings of E into E. A subset

I of / is said to be an ideal if it satisfies the following two condi-
tions:

(1) I is a linear subset of ;
(2) feI, ge imply fg, gfeI.
The ideals of distributively generated near-rings have been

studied by 2_ and [3. Obviously, near-algebras of mappings on
Banach spaces are, in general, not distributively generated.

Examples (cf. [4 and 5). 1. A mapping f of E into E is
said to be constant if

f(x)=a for every xeE
for a fixed element a e E. We denote this mapping f by c. Since

ac+/9c=c,+a and cc=c,
the set I(E) of all constant mappings on E is a near-algebra. It is
obvious that, if a near-algebra / contains I(E), I(E) is a minimal
ideal of /, and that 4 has no proper non-zero ideal if and only if, I(E).

2. Let / be a near-algebra whose elements are bounded
(transform every bounded set into a bounded set) and continuous
mappings of E into E. Then, the set //(C) of compact (transform
every bounded set into a compact set) and continuous mappings in
/ is an ideal of //.

2. Let I be an ideal of a near-algebra /. Let us write
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f..g(I) if f--g e I. Then, this relation satisfies
(1) fg(I) implies f+hg+ h(I) for any h e /;
(2) f..g(I) implies fhgh(I) for any h e /.

However, this relation does not satisfy the iollowing condition:
(3) f..g(I) implies hfhg(I) for any h
In [1, it was shown that this relation satisfies the conditions

(1), (2), and (3) if and only if the set I satisfies the following three
conditions:

(1) I is a linear subset of ;
(2) feI, ge imply fgeI;
(3) fe I, g, he imply g(f / h)-gh e I.
A subset I which satisfies these three conditions is called an

NA-ideal
txample (cf. 4 and [5). 1. Let be a near-algebra of

all bounded and continuous mappings on E. The set I(E) defined
in the previous section is not an NA-ideal of /, although it is a
minimal ideal of

2. A mapping f of E into E is said to be (Frchet-) differentiable
if, for any a e E, there exists a bounded linear mapping l of E into
E such that

f(a/ x) f(a)-- l(x) / r(a, x) for every x E where lim r(a, x) O.

This linear mapping I may depends on a and is denoted by f’(a):
Let / be the set of all differentiable mappings f such that f(O)=O.
Then, is a near-algebra and the set {fe /If’(O)=O} is an NA-
ideal of .

The purpose of this paper is to make clear the relation between
these two kinds of ideals. We continue to assume that E is a
Banach space, although the discussions involved are sometimes purely
algebraic.. . We begin with a lemma which plays an important rSle in
the following discussions. In the sequel, we denote by L the Banach
algebra of all bounded linear mappings on E.

Lemma 1. Let be a near-algebra of mappings on E. If
L, then we have either I(E) or f(O)-- 0 for every f e

Proof. We prove that, if there exists an element fe / such
that

f(0)-- a=/= 0,
then I(E). At first, if f satisfies this condition, then co e /,
because

c(x)=a=f(O)=fO(x) for every x e E,
which means that c=fO.
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Next, let b be an arbitrary non-zero element. Then, the linear
mapping b( which is defined by

(b) (x)- (x)b,
where e E (the conjugate space of E) satisfies (a)-1, is contained
in /and

Cb(X)-b-(b) (a)-(bg)c(x) for every xe E,
hence it follows that Cb--(b)c e .

Now, we can prove the following theorem.
Theorem 1. Let be a near-algebra of mappings on E. If

tL, then every NA-ideal is an ideal.
Proof. Let I be an NA-ideal. We have only to prove that

gf e I if f e I and
Since I is an NA-ideal,

g(f/h)-gheIif feIand g, h
Putting h- 0, we have

gf--gO e I.
Since I is a linear subset, we have only to prove that gO e I.

(i) If f(0)-0 for every fe /, then g0-0 e I.
(ii) If I(E) and g(0)-b=/:0, since Cb--gO, we have only to

prove that Cb e I. Now, for a non-zero element fe I, there exists
y e E such that

f(y)-aO.
Let us take e E such that (a)-1. Then, for the bounded linear
mapping b, we have

Cb-(b)c---(b) (Cb/ C)--(b)Cb e I,
because c=fc e I.
Therefore, by Lemma 1, the proof is completed.

As we have mentioned in the second section, an ideal is not
necessarily an NA-ideal. Then, in what cases is every ideal an
NA-ideal? It is clear that, in the (near) algebra L, every ideal is
an NA-ideal. We have another near-algebra of this kind. Let us
consider the set

L+I(E)--{l/clleL and aeE}.
Under the definitions of sum and product given in the first section,
this is a near-algebra. Since the left distributive law is still not
satisfied, this is not an algebra. Let I be an ideal of this near-
algebra L+I(E). Then, for

l+c e I and l-b e L+I(E) (i-1, 2), we have
co)+ %)- l(1/ c)/ l(l- Cb2 - Cbl-- ll(12- Cb2) --Cbl

l(l- c) e I,
hence it follows that, in L/I(E), every ideal is an NA-ideal.

Conversely, we can prove the following theorem.



430 S. YAMAMURO Vol. 42,

Theorem 2. Let be a near-algebra of bounded mappings
on E such that L. If every ideal is an NA-ideal and I(E)c/,
then =L/I(E).

Proof. Since I(E) is an ideal, it is an NA-ideal. Let f be an
arbitrary element of /. Then, by the definition of NA-ideals, we
have

f(g/ c)--fg e I(E) for every a e E and g
Since /L, we can replace g by the identity mapping, and we
have that

f(x/a)--f(x)
is constant with respect to x. Putting x-0, we have

f(x)-f(x/a)-f(a)/f(O) for every x e E,
which means that

f f,- C](o)
where f(x)=f(x/a)--f(a).
Therefore, we have only to prove that f. is linear. To prove this,
we shall make use of the following equation"

f(x/y)--f(x)-f(y)--f(O) for every x, y eE.
Now,

f(x/ y)---f(x/ y/ a)--f(a)
=f(x/y)-f(O)
=f(x)+f(v)-2f(o)
--(f(x)--f(0)) / f(y) f(0))

f(x/ a)--f(a))/ (f(y/ a) f(a))
=A(x)

4. It is natural to conjecture that, if (i) /L, (ii) f(0)-0
for every f e and (iii) every ideal is an NA-ideal, we have
L. However, in the case when f(0)-0 for every f e /, we can not
make use of the set I(E)which played an essential rSle in the proof
of Theorem 2. A standard method to prove this conjecture may be
to construct a new near-algebra _+I(E) (the direct sum); from
+I(E)-L+I(E) it easily follows that -L. This method,
however, does not serve for our purpose, because, even if the near-
algebra / satisfies the condition that every ideal is an NA-ideal,
+I(E) does not always satisfy this condition.

Here, we can only give a partial result. We need a lemma.
Lemma 2. Let be a near-algebra of differentiable mappings

on a Banach space E. If L, then /=L+D0, where Do--
{fe /I f’(0)--0}; in other words, for any fe there exists uniquely
a pair of elements le L and fo Do such that f-l/fo.

ProoL For any fe ;/, we have
f=f’(O)+(f-f’(O))
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where f’(0)e L and (f-f’(O))’(O)-f’(O)-f’(O)-O. If f-lrd-fo where
lr e L and f0 e Do, we have

f’(0)- (/r /f0)’(0)-/(0)/f(0)-/(0)- l.
Therefore, this expression is unique.

A linear subset I of a near-algebra 3/ is called a left ideal if
gfeI whenever feIand ge. A linear subset I of / is called
a left NA-ideal if g(f-F h)--gh e I whenever g, h e / and f e I.

Theorem 4. Let be a near-algebra of differentiable mapp-
ings on a Banach space E. IfDL, f(0)-0 for every fe and
every left ideal is a left NA-ideal, then -L.

Proof. Let us consider the following set"
D---- f e f’(a)-- 0},

which is obviously a left ideal of 3/. Then it follows from our
assumption that

g(f+h)--gheD whenever g, he// and feD,
which means that, putting h-1 (the identity mapping),

g (f()H-a) (f’(a)d- 1)--g’(a) 0.
Since f’(a)-0, we have

g’(f(a) H- a)-- g’(a) whenever g e / and fe D.
(1) Let us assume that there exist an element f0 e Do and an

element a eE such that fo(a)O. Let us take e E such that
g(f0(a))-l. Then, for any element beE, we have (b()foeD,
where b( is a linear mapping which is defined by (b(g)(x)-(x)b
for every x. Therefore, putting f-(b()fo, since (b(g)fo(a)-b,
we have

g’(b+ a)- g’(a) for every b e E,
which means that g’(x) is constant with respect to x eE, or,
equivalently, g is a linear mapping. Since g is an arbitrary element
of 7, we have /=L.

(2) Let us assume that, for any x eE, we have f(x)-O for
every fe D. Then, since f--if(x) e D, we have

f(x)=f’(x)(x) for every xeE and fe7.
Now, let us take an arbitrary e E and consider the functional

(t)=a(f(tx)).
Then, since

i i (t),@’(t)--( f’(tx) (x))-- -(f(tx))--

we have that @(t)-ct for every real number t and for some constant
c. Therefore, we have

(f(tx))- t(f(x)),
which implies that

f(tx)-tf(x) for every x eE and number t,
because g is an arbitrary element of Eo Now, from Lemma 2 it
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follows that
0 f0’(0) (x)

lira fo(tX)/t- lim (f(tx) l(tx))/t
tO

--f()--l() for every e E,
which means that f=l e L. Thus the proof is completed.
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