
No. 6 583

130. Some Applications of the Functional.
Representations of Normal Operators

in Hilbert Spaces. XXI

By Sakuji INOUE
Faculty of Science, Kumamoto University

(Comm. by Kinjir5 KUSUGL ..., June 13, 1966)

Definition A. Let T() be the function stated in [1; let a=
sup I; and let the mutually disjoint, closed, and connected domains

D(j-I, 2, 3, ..., n) which have no point in common with the
closure of the denumerably infinite set {}=,, be contained in
the disc l21=<a. Hence, by definition, T(2) is regular in the complex

-plane {2" < + } with the exception of {} D and every

belonging to the set {}. is a singularity ofpoint T(2).
Here {i} denotes the closure of {}.

Theorem 59. Let
log T(pe-) Idt (a<p< + ).m(p,) o

Then

lim re(p, oo) < -t-
,+0 log 1

Proof. Since, as already stated in 1, the sum-function :(2)
of the first and second principal parts of T(2) is given by

a=l =2 =1

(1 m, n, k< + ),
where c) ] ]] A, [[ [[ A [ < + , we can find from the inequality

log = N=log +log p holding for any complex numbers

that
+ +
log] T(pe-’) log R(pe-’)

+ log
(pc--2)"

+ log .=((pe-I N)-%., f.)

+
+log = ,((Pe-I-N)-’g,, ga) +log 4

where R(2) denotes the ordinary part of T(2) and hence is an integral
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function by definition. Since, on the other hand,

+ (a<p/__. + )
+ 1 + log ] c(.) + log m,

so that

log ,((pe-’q- ) A. A’) m(m+)(48) lira _<
+0 log 1 2

Since, moreover, it is similarly verified from the definitions of
D, g, and g that

((Pe-q-N)-, )- (pe__)
()g, ) (<P< + )

we have

This last result yields the inequalities
+
log , ((pe-q N)-"fi., f’)

==i, log II A. II II fg II + log m (a< p< + oo)
-= (p-- a)"

__< log+ (p--a)"l +log IIA [[ II f’ II +log m,

+ cg
log . (pe_-i--- 2)" m(m+ 1)(47) lim

+0 log 1 2

Suppose now that {K()(z)} denotes the complex spectral family
of the bounded normal operator N for each value of j=l, 2, 3,...,

Then there is no difficulty in showing that[eK()(A)f.[=
[]= K()A)f. [[". for any with modulus 1 and"=’’anymutually dis-

joint (bounded)domains A, k--l, 2, 3, ..., p; and hence we can
verify from the definitions concerning ft., f., D, {2}, and a that

((pe_q_N)_,f., f) [_ _1 d(K()(z)f., f)[- (pe-*.-z)"
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+
log

log ,, ((pe-*I.-N])-’ga, ge k(k 1)(49) lim =,=1 +
po+0 log 1 : 2

Remembering that R() is an integral function, it is found from
the inequalities (47), (48), and (49) that

lim re(p, ) m(m+l)+ k(k+l) <+,
.+0 log 1 = 2

as we wished to prove.
Definition B. From now on we shall suppose that m is not

finite. In the first place, f. and f are expressed in the forms, and fi-a respectively [1], and here

<+ and ]a ]<+. We nex suppose ha the

multiplicity of any eiffenvalue 2 {2} of N equals 1. Since, by

definition, N9L-29L(v-1, 2, 8, ...), i is clear ha c-ai
for c) in the equality ((I-N)-"fi. f[.)- In addition,

ft. and f:. can be so chosen as to satisfy the condition
()()

(50) (-()(0 , v--l, 2, 3, e {})

If for example, we se >- K and >- K where

l<e<+ and O<lKl<+ for -1,, hen

Since, moreover, we have

1 condition (0) is satisfied. Moreover fi andwhere M:su .-
f: boh belon to , for such and > (v-l, , ,...). On he
other hand, we can show as below ha for any pair of f , and

) f fg) is regularf: saisfyin (0)he function ((I-N-
in he domain {X: {)}. Since boh fi and f: belon o the

and hence
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subspace determined by the incomplete orthonormal set {)},

T,(.) - ((,I-N)-f, f;) (, e {2}, 1 m< + )
1 d(K()(z)fi., f:)

and hence T() is regular in . Furthermore it is easily verified
that the infinite sequence {T()}=,, possesses in the attribute
of uniform convergence in the wider sense. Consequently the limit

function ((21-N) f. f:.) is regular in . For an arbitrary pair
of ft. e and f[. e satisfying (50) we set

(51) U(2)-R(2)+((fI-N)-"fi, f:,)+((fI-N)-g, ga),
= ==where R(), N, g, and g are the same notations as before.

Clearly U() is regular at any point ( ) not belonging to the set
{2,[ D by virtue of the hypotheses concerning ga, g, and

D [1. Since there exist uncountably many functions U(2) with
this property for fixed {}, N, and D (j=l, 2, 3,..., n), we shall
denote by * the family of these functions. Moreover we shall call
any 2 e {} "an essential singularity of U()e * in the sense of the
functional analysis", though 2, is not an essential singularity of U(2)
in the usual sense of the classical theory of functions for the case
where , is one of accumulating points of {2}.

Theorem 60. Let U()e * be the function defined by (51); let
{} be everywhere dense on an open rectifiable curve F; let be
any positive number less than the distance from an arbitrarily given

point eF to the set D; let be the domain {2"]-- };
and let 2 be the domain --[F. Then U() assumes in 2
every finite value, with the possible exception of at most one finite
value, an infinite number of times.

Proof. Let the two extremities of F be A and B; let M be
the middle point of the segment A of F; and let M be the middle
point of the segment M of . By continuing this procedure we
have an infinite sequence of points M (-1, 2, 3,...)e AS tending
to . Similarly we construct another infinite sequence of points

M(V-1, 2, 3, ...)eB tending to . We denote by p the least

positive integer of in , belonging to the set {2}M_M where
p is a positive integer. Setting =1, 2, 3,... and M0=A, we have
an infinite sequence of points 2 (-1, 2, 3, ...)e AS tending to .
In a similar manner, we construct another infinite sequence of
points ;(-1, 2, 3,...)e B tending to . If we now consider the
function
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U(,)- R(,)/ ((,I-N)-f f:)-+-,’, ((,I--N)-’g,, g;.)

where

then, for any point not belonin to the closure {2}, we hve

where the right-hand double series converges to 0 in accordance with
(50) as p becomes infinite. This result and the expressions of U()
and U() permit us to assert that U() is the limit function of U()
in the entire complex 2-plane as p becomes infinite. Since, of course,
the above inequality holds good in a simply connected (closed) domain
E assigned arbitrarily in 2, there exists a suitably large positive
integer G such that the inequality U()-U(2)]< e holds over E
for an arbitrarily given positive e and every positive integer p
greater than G. Thus the infinite sequence {U()}>a converges
uniformly to U(2) in E; and in addition, as is seen from the earlier
discussion on the limit function of {T()}, any U()is regular over

E. Accordingly there exists a large positive integer G’ exceeding
G such that, for any complex number w and any integer p greater
than G’, U(2), and U(2) have the same number (inclusive of 0) of
w-points in the interior of E according to a well-known theorem.
This final result is also valid in 2 by virtue of the supposition that

E is an arbitrary closed domain in the open domain 2. Since, on
the other hand, any U(2) with p>G’ has in the domain {2:
[-$]<} a countably infinite number of isolated essential
singularities

in the sense of the classical theory of functions, it assumes in
every value, with the possible exception of at most two values, an
infinite) number of times in accordance with Picard’s theorem.
Here it is obvious from the regularity of U() in the domain
S, that for ;-S, the point at infinity is an exceptional value
of U(). In addition, each point of S, is an accumulating point
of w-points of U(2) provided that w is not an exceptional value of
U,() for its neighborhood. If we now denote by Z a bounded
domain which contains F in the interior of itself but not any point
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of (JD, then U(2) is regular in z/--F. Since, however, -()z(>:/:0

(c, =1, 2, 3,...) by hypothesis, fi and fi’ both consist of all
and therefore it is at once obvious that not only any e {} is an
essential singularity of U() in the sense of the functional analysis
but that also every point on F is a singularity of U() by virtue
of the hypothesis on {,}. As a result, any w-point of U() in
never lies on F. Again let w be a non-exceptional value of U,(2)
with p>G’ for and then let us suppose, contrary to what we
wish to prove, that the number of w-points of U() in z/ is finite.
Then the number of w-points of the U()in z/ would also be finite;
for the numbers of w-points of these two functions U(2) and U(2)
with p>G’ are identical in z/, as pointed out before. Accordingly
the function U(2) would have on F infinitely many co-points.
Remembering that U() is the limit function of U() in the entire
complex 2-plane as p becomes infinite and that every point on F is
a singularity of U(), the just derived result is absurd. Consequently
the number of w-points of U() in z/ is never finite.

The proof of the theorem is thus complete.
Remark 1. The hypothesis that all the D (3"--1, 2, 3, ..., n) lie

on the disc I__< sup , is not necessary for the validity of Theorem
60, though we adopted it for the sake of later studies.

Remark 2. More generally, the result of Theorem 60 holds for
the case where the set {} is everywhere dense on a finite number
of open or closed rectifiable curves, as will be verified by small
modifications of the method used above.

By the same reasoning as that applied to deduce Theorem 42
from Theorem 41 2, we can establish.

Theorem 61. Let U(), F, , $, and z/ be the same notations
as those in the statement of Theorem 60 respectively, and z/ an
open domain covered by z/ as ranges over F. Then U(2) has at
most one finite exceptional value (in the sense.of Picard) with re-
spect to
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