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1. Introduction. 1.1. Definition.*’ Let 2=2A(w) be continuous,
differentiable and monotone increasing in (0, o), and let it tend

to infinity as w—oo. For a given series > a,, we put
1
Cw)= 23 d(w)—-amya,  (r=0).
Then the series i}a, is called to be summable | R, 2, r| (r=0), if
1

1.1.1) S: d[%;")]l <oo

for a positive number A.
For r > 0, and non-integral w, we have

d Cr(w) _ ’rl (’LU) -
w [{Z(w)}' ]_ A(w)}+r ,.2 {A(w) — ()} A(n)a,.

Hence i}a, is summable |R, 1, r| (r>0), if and only if
1

1.1.2) S“ {;’(’1 ()';3 3 (@) - A Ama, | dw<oo.

1.2. We suppose that f(¢) is integrable in the Lebesgue sense
in the interval (—=, 7), and is periodic with period 27, so that
1.2.1) f(t)~§ao+2:} (a, cos nt+b, sin nt) =§ao+$ A (t).

Then the allied series is

(1.2.2) S (b, cos nt—a, sin nt) =) B,(2).

We write ' '

1.23)  $O)=4f@+O)—f@—1t)) 0(t)=S:—"/%"ldu.

The object of the present paper is to prove the following

Theorem. Ift=|6(t)]| log EapS L(0, ), then (1.2.2) is summable
IR, logw, 2| at t=2.

This theorem was conjectured by N. Basu in a stronger form.
2. Proof of the Theorem. 2.1. We write

2.1.1) g(w, )= log n(log ﬂ) sin nt,
n<w n

*)  Mohanty (1).
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(2.1.2) h(w, )= 3] nlog n(log —'"i) cos nt.
n<w n

For the proof of the theorem we require the following lemmas:
Lemma 1. g(w, t)=0(w log w).
Proof. By (2.1.1),

lg(w, t)|< S log n(log E),
n<w n
Now we put

3 log n(log %>= Zélog n(log ) 1 log n(log ) P4Q.

n<w n<lw weEngw
Since log u(log %) is monotone increasing in 1<u <w?, we have,
by the second mean value theorem,
P S log % (log )du+ O((log w)?®)
<log wi(log w*)w?+O((log w)?) = O(w(log w)?).

Since log u(log —W—) is monotone decreasing in wi<u<w, we have
u

Q< S:’z log u (log 2) du+0((log w)*) <log w Sw (log —':%) du+O((log w)?)

=w log w S log Y dv+0((log w)*) =O(w log w).

Hence we get the required inequality.
Lemma 2. g(w, t)=0(t"(log w)?).
Proof. By Abel’s lemma, we have

g(w,t)=>] logn (log E) sin nt
n<w n

<A Kg_l 4 (log n log 2) ’+O(t“w‘1 log w)
<% {E; (log nlog ¥ ’+ %<,.<..,_1 (log n log %) ‘}

+O@t'w" log w)
=0(t"'(log w)),

since log u (log ﬂ) is monotone increasing in 1<« <w? and monotone
u

decreasing in w? <u<w.
Lemma 3. g(w, t)=0(t"*log w).
Proof. Using Abel’s lemma twice, we have

g(w, t)= E log n(log E) sin nt

= 4 (log n log ) é D,(t)+0@t*w" log w)+O(t—*w" log w),

n<w—-2
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so that
@13) g, t>1<% >3

n<wWw—2

Vi (log n log ) ‘+O(t"‘ ~! log w)

=% { T+ } +O0@t 2w log w) = ) (P+ Q)+ O0(t*w" log w).

n<ew?  ewd<n<w—2
Since (log u log ;) is monotone decreasing in 1<u<ew? and mono-
tone increasing in ewt<u<w—2, we have
(2.1.4) P= 2 ( 1 log % —% log n) ‘=O(log w),

n<cw

(2.1.5) Q= >

ews<ns<w—2

Thus from (2.1.3), (2.1.4), and (2.1.5), we get the required inequality.
Lemma 4. h(w,t)=0@ " w log w).
Proof. Using Abel’s lemma to (2.1.2), we get

h(w, t)=3) nlog n log E cos nt
n<w

A(l log w_1 log n) ‘=O(w1’ log w).
n n n

<4 54

t n<w—1
:A{,Kzﬂw'i‘ 2 +0(t"1 log' w)=7(P+ Q)-I-O(t"l log w),

t nw<n<w—1

where 7 is taken so that (u log % log 1”—) is monotone increasing in
u

(n log nlog ¥ I + O(t* log w)

1<u<7nw and monotone decreasing in pw<u<w, 0<7n<1. Therefore
we get P=O(w log w) and @ =0(w log w). Hence we get the required
inequality.
Lemma 5. k(w, t)=0(t"*(log w)?).
Proof. By twice use of Abel’s lemma, we have
h(w, t)= 2«, , 4 (n log n log ) $ D,(t)+O(t* log w).

Therefore

|hw, <4 3
t? a<w—

=é{ S+ oS }+0(t“2logw):F(P+Q)+O(t‘2logw).

2
t n<s"1w% e_lw'&< n<w—2

A (n log n log ) ‘+ O(t*log w)

’
Since (u log u log ﬂ) is monotone increasing in 1<u<e'w? and is
%

monotone decreasing in e'wt<u<w, we have

P= > |4 (log nlog ¥ +log ¥ —log 'n,) le((log w)?),
n<e lw n n

Q= 3 4 (log nlog ¥ +log ¥ —log n) l =0((log w)*).
c—lwi<n< w—2 n n



80 F. YEr [Vol. 43,

Hence we get the required inequality.
Lemma 6. h(w,t)=0(t"*log w).
Proof. By three time use of Abel’s lemma, we have

h(w, t)= A’(n log n log %) $ D,(t)+ Ot log w)

n<w—2

_ 1 2 w
T KE‘M 4 ('n log n log n)

I w )
4sin’ /2 DI (n log  log n) cos (n+1)t+0(t* log w)

1 . w .
4 sin® t/2 I (n log 7 log n) cos (n+1)t+O0(t~* log w)

1 . w) e .
Zsim 42 -2’ (nlog nlog ) 31 cos (n—+ 1)t +0(¢* log w).

Thus we have
| h(w, t) 1<__

<w

t“{ Z‘ + > }+0(t*2 log 'w)=§(P+Q)+O(t~2 log w).

u<w é<‘n<w—3

As<'n log = log ) ‘—I— O(t2 log w)

n
Since (u log u log —) is monotone decreasing in 1<u <w? and mono-
u
tone increasing in w*<u<w, we have

P= 2 (1Iogﬂ—llogn—£)|=0(logw).
n n n

n<w

Similarly we have Q=0(w—2%log w). Hence we get the required
inequality.

2.2. We shall now prove the theorem. By integrating by parts,
we find

@.21)  B(x) =% S ¥ (t) sin nt di= —% S £6/(t) sin nt dt
0 [}
_2 Su o(t) sin nt dt+—2— S” 0(t) nt cos nt dt.
T Jo T Jo

The series S)B,(x) is summable | R, log w, 2|, if
1

S” dw

. w(log w)®

Substituting (2.2.1) for B,(x), we have, by (2.1.1) and (2.1.2),

(2.2.2) I<_72; S| o(t) | dt S“ w-(log w)~* | g(w, t) | dw

St logn log ¥ B,(a:) ‘< oo,

n<w

2 S £10(¢) | dt rw“(log )~ | h(w, §) | duw.

Since S t—‘lﬂ(t)llog T dt is finite, it is enough to show that
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I

S“w“l(log w)~" | g(w, t) | dw =0(t“ log 27”) for 0<t<m;
and
L= | w-(og wy | A(w, )| dw=0(t*10g Z)  for 0<t<m.

Let A1=27”10g 27” A;=e** and let

(2.2.3) I= S"+ S:“+ r . S Y
1

e A,
Using Lemma 1, we have ’
_ 4 —2 _ —1 2\
2.2.4) I,I—O(S‘ (log w) dw)—O(t (10g T) )
By Lemma 2, we have
(2.2.5) I =O(t“rzw"‘(log w)“‘dw) =O(t‘1 log 2% .
- ® 4 t /

By Lemma 3, we have
(2.2.6) Im=0(t-’ S: w(log w)—=dw) —0(t).

Hence from (2.2.3), (2.2.4), (2.2.5), and (2.2.6), we get I,= O(t“ log 27”)

It remains to prove that I2=0(t-2 log 27”) Let Al—_—gtﬁ log 27”,
A,=¢** and let
oo 4y Ag L
@.2.7) L:S :S +L +S =L+ Iyt L.
1

e e Az

By Lemma 4, we have

(2.2.8) L,=0(t" S“ (log w)—”dw) — o(t—=(1og %)")
By Lemma 5, we have

(2.2.9) L= O(t" E’ w-(log w)—‘dw) - o(t~2 log 27” .
By Lemma 6, we have 1

(2.2.10) L,:O(t" S‘; w=(log w)~*dw)=0(t™).

Hence from (2.2.7), (2.2.8), (2.2.9), and (2.2.10), we have the required
inequalily for I,, Thus the proof of the theorem is completed.

The author has great pleasure in taking this opportunity of ex-
pressing his warmest thanks to Professor S. Izumi for his valuable
suggestion and guidance.
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