A Remark on Ikegami's Paper "On the Non-Minimal 71. Martin Boundary Points"

By Nobushige Toda

Mathematical Institute, Nagoya University

(Comm. by Kinjirô Kunugi, M.J.A., April 12, 1967)

In the theory of the Martin compactification (see $\lceil 2 \rceil$), it is of interest to know how many non-minimal points there are. Recently Ikegami ([1]) has proved that, if the set of non-minimal points is not void, it contains infinitely many points.

Let Ω be a Green space, $\widehat{\Omega}$ its Martin compactification, Δ the Martin boundary of Ω and Δ_1 , Δ_0 the minimal and non-minimal part of Δ respectively.

We will improve Ikegami's result as follows:

Theorem. If Δ_0 is not void, then Δ_0 is uncountable.

Proof. Let ω be an open set of Ω , $\{x_n\}$ a sequence of points in ω tending to x_0 of Δ , $\mathcal{E}_{K_{x_n}}^{\omega}(y)$ the extremisation of $K(x_n, y)$ relative to ω , which is written by

$$\mathcal{E}_{K_{x_n}}^{\omega}(y) = \int K(x, y) d\mu_n(x)$$

where K(x, y) is the Martin kernel, μ_n is a positive mass-distribution on $\overset{*}{\omega} \cap \Omega$ and the total mass of μ_n does not exceed 1, $\overset{*}{\omega}$ being the boundary of ω in $\widehat{\Omega}$. A subsequence of $\{\mu_n\}$ converges vaguely to μ whose carrier is contained in $\overset{*}{\omega} \cap \Omega$.

Clearly,

$$v(y) = \int K(x, y) d\mu(x)$$

is a positive superharmonic function in Ω . Ikegami proved in [1] that

$$\mathcal{C}_{K_{x_0}}^{\omega}(y) \leq v(y)$$
.

 $\mathcal{E}^{\scriptscriptstyle w}_{{\scriptscriptstyle K}_{x_0}}\!(y)\!\leq\!v(y).$ Let $\mu_{\scriptscriptstyle 1}$ be the restriction of μ to ${\mathcal {\Delta}},$ and

$$u(y) = \int K(x, y) d\mu_1(x).$$

Then u(y) is the greatest harmonic minorant of v(y).

Let x_0 be a point of Δ_0 . By the Martin representation theorem ([2]), there exists a measure ν on Δ_1 such that

$$K(x_0, y) = \int_{\mathcal{A}} K(x, y) d\nu(x).$$

We put $D_r = \{x; \rho(x_0, x) < r\}$ and $C_r = \{x; \rho(x_0, x) = r\}$ where ρ implies the Martin metric in $\hat{\Omega}$. There exists an r_0 such that for all r positive less than r_0

$$\nu(\Delta_1 \cap C\bar{D}_r) > 0$$
,

so that

$$u_1^r(y) = \int_{A_1 \cap C\overline{D}_r} K(x, y) d
u(x)$$

is positive harmonic in Ω .

If we take $\omega \!=\! D_r \cap \varOmega$ and put

$$u^r(y) = \int K(x, y) d\mu_1^r(x)$$

(we use μ_1^r instead of μ_1), then

$$u^r(y) \ge u_1^r(y)$$

as in [1].

Using the fact that $u_1^r(y)$ is positive and harmonic for all positive r less than r_0 , we can conclude that C_r is non-compact in Ω . The carrier of μ_1^r is contained in $\overline{C_r \cap \Omega} \cap \varDelta \subset C_r \cap \varDelta$. As Ikegami ([1]) did, we can prove that μ_1^r is not canonical for all positive r less than r_0 . This implies that the carrier of μ_1^r contains at least one non-minimal point of \varDelta . If $r_1 \neq r_2$, then $C_{r_1} \cap C_{r_2} = \phi$. Consequently we can conclude that \varDelta_0 is uncountable if it is not void.

References

- [1] T. Ikegami: On the non-minimal Martin boundary points. Nagoya Math. J., 29, 287-290 (1967).
- [2] R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc., 49, 137-172 (1941).