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107. On a Certain Class of Univalent Functions

By Tetsujiro KAKEHASHI

University of Osaka Prefecture

(Comm. by Kinjird KUNUGI, M.J.A., June 12, 1967)

Let us consider a simply connected polygon which has 2% sides
parallel to the real axis or imaginary axis in the w-plane. If we
call its vertices w,, w,, - -, w, and denote its interior angles 7a,, wa,,
..., T, respectively, a, takes the value 1/2 or 3/2, and >, «; is
equal to 2n—2.

We can construct the function w= f(z) which maps the interior
of unit circle |z2|<1 onto the interior of this polygon by
(D M K=z (Z =y )
where z,=¢“(0<6,<6,< -+ <8,,<27) are points on the unit circle
|z|=1, and k is a constant complex number. The equality (1) is
known as Schwarz-Christoffel’s formula.

If we put z;'=¢,, we have
(2) A~ O el —e) - (L),

2
where C is a constant, d, is equal to 1/2 or —1/2 and >3, 0, is
equal to —2, And square roots in (2) mean to take the branch

such that /1 =1. The function %’1 above defined is analytic for
2

|z|<1 and w=f(2) is analytic —
and univalent for |z |<1.

Next we consider a polygon
shown in Fig. 1. In this case, yl= == -
we can write signs of 4, in
order and if we take apart
suitable four minus signs, we _
can arrange a sequence of couples Fig. 1
(—+) or (+—) as follows,

(3) OO(+ —)(— H)E(— +)(— +)(+ =)= +)(+ —).

We shall denote a class of functions w=f(2) which map the
interior of unit circle respectively onto the interior of a polygon
which has the nature above mentioned by the symbol S,. For a
function which belongs to the class S,, we have the following theorem.

Theorem. Let w=f(2) be a function which belongs to the class
S,, and let

Wir= = Wan —
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(4) w=fR)=A+C@r+A42+ +++ +A,2"+ ---):|2|<1
be the Taylor’s expansion of w=f(z). Then coefficients A, satisfy
(5) |4, |<m:m=28, ..

In the proof of this theorem, we consider the following lemma.

Lemma. Let ¢,:k=1,2...,2N be points on the wunit circle
such that {,=e%(0<60,<6,< ... <6,,<27), and G(z) be a function
represented by

G(z)= 2—C 2—-¢ .. 2Ly .
2—4 2—& Z— v

Then, for |z|<1, the function G(z) takes values on a half plane
bordered by a line which passes the
origiNn.

Proof. In Fig. 2, when |z|=1,
we have

1 _
2=t _ 5(02*01): FASReS

Z—Cl

arg 1 _
—2_(02 —0)+7: z€88,

and when |z|<1, we have

L,—0y<arg 2% <Lo,—0)+n.

2 2—¢ 2
Accordingly, when 2z varies on the unit
circle, if 2z is not on any one of arcs

=3 ]
Cilay Calae » *Loy_1lew, arg G(2) is equal to
Z%(—61+02_03+‘94“— tee _02N—1+02N),

and if 2z is on any one of these arcs, arg G(z) is equal to @ +n. And
when #z is an interior point to the unit circle, we have 8 <arg G(z)<
0 +2r. Thus the lemma has been proved.

Now we shall prove the theorem. When a function w=f(2)

can be written from (2) as follows,

(6) U0 —CIT (L—euey | [[ =%t [ 1 L=tot 170,

£ 1—60u 4% 1—¢, 42
where z,,=¢;t are points correspond to four minus signs removed
suitably in (8), (Zeop—1=Eriu1, %2,0n=Ez3s) are couples correspond to
(—+), and (25,2,_1=653,—1, %s,5=E55) are couples correspond to (+ —)
in (3).
We can verify that the Taylor’s expansion of H (A —ey2) 2

is majorated by (1—2)*=1+22+82°+ +nz”‘1+

A—z)"r=1+4 2z+—2— *+ ... is a power series with positive coefli-

belongs to the class S,, ‘?:

-, because
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cients. That is, if we put
4

[1 I-eu2)™*=14+ar+az’+ -+ +ae"+ -+,

k=1
we have |a,_;|=<n and the equality is valid only when all z,
coincide with one point.
For |z|<1,functions [] -G apq 11 R (4) take
© - 82,2,,_12 I 1 —_— 83,2,,_12
values respectively on a half plane defined in the lemma. If we
define that square roots take respectively the branch such that
_ _ 1 _ —1f2
v'1=1, [H ﬁﬁz—] 2, and |:H —1——5325—} take values respec-
" 1_82,2#—1z v 1—gy5, 42
tively on a quarter plane bordered by two lines meet at right angle
_ 1/2
in the origin. Accordingly, for |z |<1, the function [H 1—6—23‘?——]
i 1—¢& 1%

_ -1/ .
[H —11——é—~6“”ﬁz—:| v takes values on a half plane bordered by a line
v T C3,2v—1

which passes the origin.
As the half plane contains the unit in its interior, the product

of this function and e"‘*’( - % <¢ <%> takes values which have positive

real parts for |z|<1l. If we write the Taylor’s expansion of this
function as follows,
(7) [H 1—¢,,.2 ]”ZIZH 1—e,,2 ]‘”2
#“ 1"52,2#-1z v 1“53,2v-1z
=14+B2+B:"+ ++o +8,2"+ -,
it is known that inequalities |e*“B,|<2cos ¢<2 follow, that is, we
have |B,]|<2. Now we can verify that the Taylor’s expansion (7)

is majorated by i"‘z =14224+22"+ oo 422"+ -,
—z
Accordingly, the Taylor’s expansion
lii—lv—=1+a1z+a2z2+ cee Fat+ ootz
C dz
can be majorated by
1 1+2
-2 1-2z i e
:1+22z+32z2+ c oo +n2zn—l+ ces, W4 Ws
and we have |a,_, |<n® |An|=|~0—bﬂ——1l<n H
"
follows at once. Thus the theorem has We W .
. 3 6 7
been established. Fig. 3

Remark. The equality |A4,|=n can
be satisfied only when 2z, =z,=z,=z=2=2,=¢, z,=2%=—¢ (le|=1)
as the limit case of a polygon in Fig. 3.



