No. 6]

92. On the Jacobian Varieties of Davenport-Hasse Curves

By Toshihiko YAMADA Department of Mathematics, Osaka University (Comm. by Kenjiro SHODA, M.J.A., June 12, 1967)

Let p be any prime number, and consider the Davenport-Hasse curves C_a defined by the equations

(1) $y^{p} - y = x^{p^{a}-1}$ $(a=1, 2, 3, \cdots)$

over the prime field GF(p). If we denote by θ a primitive $(p^{a}-1)$ (p-1)-th root of unity in the algebraic closure of GF(p), the map (2) $\sigma: (x, y) \rightarrow (\theta x, \theta^{p^{a}-1}y)$

defines an automorphism of C_a , which generates a cyclic group G of order $(p^a-1)(p-1)$. In this note we shall investigate the following problems:

1. To determine the l-adic representation of the automorphism group G (Theorem 1).

2. The decomposition of the jacobian variety J_a of C_a into simple factors (Theorem 2,3).

3. To give explicitly generators of endomorphism algebra (Theorem 5).

Detailed proofs and other aspects of Davenport-Hasse curves will be published elsewhere.

The author thanks to Professor Morikawa for his kind encouragement.

1. If we put $z=y^{p-1}$, the curve C_a is birationally equivalent to a curve defined by the equation

(3) $x^{(p^a-1)(p-1)} = z(z-1)^{p-1}$.

The previous automorphism σ is given in this case by

 $(2)' \qquad \sigma: (z, x) \longrightarrow (z, \theta x).$

Now the following lemma is easily proved.

Lemma 1. The smallest natural number f such that $p^{f} \equiv 1 \mod (p^{a}-1)(p-1)$ is equal to a(p-1).

Owing to this lemma, θ belongs to the field $k=GF(p^{a(p-1)})$. So the algebraic function field k(z, x) defined by the equation (3) is a Kummer extension over k(z) of degree $(p^a-1)(p-1)$, whose Galois group G is generated by σ . We denote by $\mathfrak{p}_0, \mathfrak{p}_1$, the prime divisors of k(z) which are the numerators of principal divisors (z), (z-1)respectively, and by \mathfrak{p}_{∞} , the denominator of (z). Then on account of the equation (3), every prime divisor of k(z) other than $\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_{\infty}$ is not ramified in k(z, x). We shall make the table of behavior of

k(z)	k(z, x)	e	f	g
po	\$\$0	$(p^a - 1)(p - 1)$	1	1
p 1	$\mathfrak{P}_{1,1},\ldots,\mathfrak{P}_{1,p-1}$	$p^{a}-1$	1	<i>p</i> -1
₽∞	₽∞	$(p^a - 1)(p - 1)$	1	1

the \mathfrak{p}_i $(i=0, 1, \infty)$ in k(z, x), where the notation is as usual.

Since the prime divisors \mathfrak{P}_0 , $\mathfrak{P}_{1,i}(1 \leq i \leq p-1)$, \mathfrak{P}_{∞} of k(z, x) have their degrees equal to one, they correspond respectively to the points P_0 , $P_{1i}(1 \leq i \leq p-1)$, P_{∞} of the curve C_a . Let P be a point of C_a and n a positive integer. Let $V_n(P)$ be the *n*-th ramification group of P in G in the meaning of Weil [3]. Then, because of this table, we have

$$(4) \qquad \begin{array}{l} V_1(P_0) = V_1(P_\infty) = G \\ V_1(P_{1,i}) = \{\sigma^{\nu}; \ \nu \equiv 0 \ \text{mod.} \ p-1\} \\ V_2(P_0) = V_2(P_\infty) = V_2(P_{1,i}) = \{e\}. \end{array} \qquad (1 \leqslant i \leqslant p-1)$$

We denote by ξ_{α} the correspondences of C_a defined by the elements α of G. Then the ξ_{α} induce endomorphisms on the Tate group $T_l(J_a)$ of the jacobian variety J_a of C_a . So we have a representation of G in the field of *l*-adic numbers, which is also written as ξ_{α} . We denote by $a_P(\alpha)$, for $\alpha \neq e$, the multiplicity of $P \times P$ in the intersection $\mathcal{A} \cdot \xi_{\alpha}$, where \mathcal{A} is the diagonal of $C \times C_a$. We shall quote the result of Weil [3].

Lemma 2. The trace of the representation ξ_{α} of G in $T_l(J_{\alpha})$ is given by the formula:

$$(5) ext{ Tr}(\xi_{lpha}) = 2 - \sum\limits_{P} a_{P}(lpha) \ (lpha
eq e) \ ext{ Tr}(\xi_{e}) = 2g$$

where g is the genus of C_a and is equal to $(p^a-2)(p-1)2$. From this lemma and (4), we can get

(6)
$$\operatorname{Tr}(\xi_{\sigma\nu}) = \begin{cases} -(p-1) \quad \nu \equiv 0 \text{ mod. } p-1 \quad (\sigma^{\nu} \neq e) \\ 0 \quad \nu \not\equiv 0 \text{ mod. } p-1. \end{cases}$$

Let ψ be a generator of the character group G^* of G. Then we have

$$\operatorname{Tr}(\xi_{\alpha}) = \sum_{\mu=1}^{(p^{\mu}-1)(p-1)} c_{\mu} \psi^{\mu}(\alpha),$$

where the coefficients c_{μ} are calculated by the relations of orthogonality of characters:

$$c_{\mu} = \frac{1}{(p^{a}-1)(p-1)} \sum_{\alpha \in G} \psi^{\mu}(\alpha^{-1}) \operatorname{Tr}(\xi_{\alpha}).$$

From (5), (6) we get

$$c_{\mu} = egin{cases} 1 & \mu \not\equiv 0 \ {
m mod.} \ p^a - 1 \ 0 & \mu \equiv 0 \ {
m mod.} \ p^a - 1. \end{cases}$$

Thus we obtain

No. 6]

Theorem 1. The *l*-adic representation ξ_{α} in $T_l(J_a)$ of the automorphism group G is the direct sum of the irreducible representations ψ^{ν} of multiplicity one, where ν runs from 1 to $(p^a-1) \cdot (p-1)$ except $\nu \equiv 0 \mod p^a - 1$.

2. In the first place we shall summarize the fact about the prime ideal decompositions of characteristic roots of Frobenius endomorphism (Davenport-Hasse [1]). Let χ be a character of order p^a-1 of $GF(p^a)^*$. Then the characteristic roots of p^a -th endomorphism on J_a are

Hereafter we shall put $q = p^a$. We denote by K_n the field of the *n*-th roots of unity over the field Q of rational numbers. Then the $\tau_j(\chi^i)$ belong to $K_{p(q-1)}$. The automorphism group of K_{q-1} over Q is isomorphic to the group R of prime residue-classes mod. q-1. Denote by P the subgroup of R which is generated by $p \mod q-1$, and let ρ run through representatives of the factor group R/P: $R = \sum_{\substack{\rho \\ p(q-1)}} \rho P$. Then the prime ideal decompositions of p in K_{q-1} and $K_{p(q-1)}$ can be written as follows:

$$(p) = \prod \mathfrak{p}_{
ho}$$
 in K_{q-1} , $(p) = \prod \mathfrak{P}_{
ho}^{p-1}$ in $K_{p(q-1)}$.

For the sake of simplicity, we put $\tau(\chi^t) = \tau_1(\chi^t)$. Then it is easy to see that

$$\tau(\chi^{t}) \longrightarrow \chi^{-1}(j) \tau(\chi^{t}) = \tau j(\chi^{t}) \qquad (1 \leq j \leq p-1)$$

by the automorphisms $\exp\left(\frac{2\pi i}{p}\right) \to \exp\left(\frac{2\pi i}{p}j\right)$ of $K_{p(q-1)}$ over K_{q-1} . For a rational integer α , we denote by $\lambda(\alpha) = \alpha_0 + \alpha_1 p + \dots + \alpha_{a-1} p^{a-1}$ $(0 \leq \alpha_i \leq p-1, \text{ not all } \alpha_i = p-1)$ the smallest non-negative residue of $\alpha \mod q-1$, and put $\sigma(\alpha) = \alpha_0 + \alpha_1 + \dots + \alpha_{a-1}$. Then the prime ideal decompositions are as follows:

(8)
$$\begin{aligned} (\tau(\chi^t)) &= \prod_{\rho} \mathfrak{P}_{\rho}^{\sigma(\rho t)} & \text{ in } K_{p(q-1)}, \\ (\tau(\chi^t)^{p-1}) &= \prod_{\rho} \mathfrak{p}_{\rho}^{\sigma(\rho t)} & \text{ in } K_{q-1}. \end{aligned}$$

We shall say that $\tau_j(\chi^i)$ and $\tau_i(\chi^s)$ are equivalent when there exist natural numbers n, m such that $\tau_j(\chi^i)^m$ and $\tau_i(\chi^s)^n$ are conjugate to each other as algebraic numbers. Then, this is an equivalence relation. Let J_a be isogenous to a product:

 $(9) \quad J_a \sim A_1 \times A_2 \times \cdots \times A_h, A_i = B_i \times \cdots \times B_i \quad (i = 1, \cdots, h),$

where the B_i are simple abelian varieties not isogenous to each other. Then the $A_i(i=1, \dots, h)$ are in one-to-one correspondence to the equivalence classes of the $\tau_j(\chi^t)$ (Tate [2]).

The following lemma is easily checked.

Lemma 3. For $0 < \alpha < p^a - 1$ we have

- i) $1 \leq \sigma(\alpha) \leq a(p-1)-1$,
- ii) $\sigma(\alpha) = 1$ if and only if $\alpha = p^i$ $(0 \le i \le a 1)$,

iii) $\sigma(\alpha) = a(p-1)-1$ if and only if $\alpha = p^a - 1 - p^i$ $(0 \le i \le a-1)$. Suppose that t satisfies $(t, p^a-1) = d > 1$, then $(\lambda(\rho t), p^a-1) = d$, and by this lemma $\sigma(\rho t)$ cannot take the value 1 nor the value a(p-1)-1 for any ρ . On account of this fact and the prime ideal decomposition (8) of $\tau(\chi^t)$, we can conclude the following

Proposition 1. If t satisfies $(t, p^a-1)>1$, then $\tau(\chi)$ and $\tau(\chi^t)$ are not equivalent.

Corollary. The set $\{\tau_j(\chi^{\mu}); (\mu, p^a-1)=1, 1 \leq \mu < p^a-1, 1 \leq j \leq p-1\}$ fills up just an equivalence class of the $\tau_j(\chi^t)$.

We denote by K the decomposition field of p in K_{q-1} , and put $Q\tau(x) = \bigcap_{\mu=1}^{\infty} Q(\tau(\chi)^{\mu})$. Then from lemma 3, we are able to see that $Q_{\tau(\chi)}$ contains K. To show that the converse is also true, we need the following lemma which can be deduced from the expression of $\tau(\chi)$ as a Gaussian sum.

Lemma 4. $\tau(\chi)$ is invariant under the automorphisms $\exp \frac{2\pi i}{q-1}$

$$\rightarrow \exp \frac{2\pi i}{q-1} p^i \ (i=1, \cdots, a) \ \text{of} \ K_{p(q-1)} \ \text{over} \ K_p.$$
After all we can reach at the equality:

(10)
$$Q_{\tau(\chi)} = Q(\tau(\chi))^{p-1} = K.$$

Now in the expression (9) of J_a as a product, let A_1 correspond to the equivalence class, to which $\tau(\chi)$ belongs (Prop. 1, Coroll.). Hereafter we put $A = A_1$. By virtue of what has been outlined, we may apply results of Tate [2] to our case.

Proposition 2. i) The endomorphism algebra $\mathcal{A}_0(A)$ of A is a central simple algebra over K, which splits at all finite primes of K not dividing p.

ii) The local invariants of $\mathcal{A}_0(A)$ at the primes \mathfrak{p}_{ρ} are given by

$$\mathrm{inv}_{\mathfrak{p}_{\rho}}[\mathcal{A}_{\scriptscriptstyle 0}(A)]\!\equiv\!rac{\sigma(
ho)}{a(p\!-\!1)} \mathrm{mod.} \ Z.$$

iii) The dimension of the simple constituent B of A is dim $B = (p-1) \cdot \varphi(p^a-1)/2$.

From Proposition 2, iii), we know that A is a simple abelian variety. Hence we have

Theorem 2. The jacobian variety J_a of the curve C_a contains as simple component the simple abelian variety A with multiplicity one, which has $\tau(\chi)^{p-1}$ as a characteristic root of the $p^{a(p-1)}$ -th endomorphism. (We may say that A is the main component of J_a .)

As for the problem of the complete decomposition of J_a into simple factors, we can prove the following

410

Theorem 3. For a=1, we have

 $J_1 \sim \prod (B_t \times \cdots \times B_t)$ (each B_t appears t times)

where the index t runs over all divisors of p-1 except t=p-1, and each B_t is a simple abelian variety which has $\tau(\chi^t)$ as a characteristic root, and B_t is not isogenous to $B_{t'}$ for $t \neq t'$.

3. According to the notation of (9), the Tate group $T_l(J_a)$ is the direct sum of the Tate groups $T_l(A_i)$. Since the endomorphisms ξ_{α} of $T_l(J_a)$ induce endomorphisms $\xi_{\alpha}^{(i)}$ on each $T_l(A_i)$, the representation ξ_{α} on $T_l(J_a)$ of the automorphism group G of the curve C_a is the direct sum of the representations $\xi_{\alpha}^{(i)}$ on $T_l(A_i)$. Let as before $A = A_1$ be the main component of J_a . Then we have

Theorem 4. The representation $\xi_{\alpha}^{(1)}$ of G on $T_{l}(A)$ is the direct sum of the irreducible representations ψ^{ν} of multiplicity one, where ν runs through representatives of prime residue classes mod. $(p^{\alpha}-1)(p-1)$.

Outline of proof. As $\mathcal{A}_0(A)$ is a division algebra, the characteristic roots of $\xi_{\sigma}^{(1)}$ are conjugate to each other. On the other hand the characteristic roots of ξ_{σ} are, by Theorem 1, $\{\psi^{\nu}(\sigma); \nu=1, \cdots, (p^a-1)(p-1), \nu \neq 0 \mod p^a-1\}$. From these facts and the equality $\varphi((p^a-1)(p-1))=(p-1)\cdot\varphi(p^a-1)=2 \dim A$, the assertion may be deduced.

Corollary. $Q(\xi_{\sigma}^{(1)})$ is the field $K_{(p^a-1)(p-1)}$ of $(p^a-1)(p-1)$ -th roots of unity.

Although the structure of the algebra $\mathcal{A}_0(A)$ is determined by Proposition 2, we shall give generators of $\mathcal{A}_0(A)$ explicitly. The *p*-th endomorphism \prod and the endomorphism ξ_{σ} of J_a induce endomorphisms of A, which are again denoted by \prod and ξ_{σ} respectively. Let K denote the decomposition field of p in $Q(\xi_{\sigma})$, which is also the decomposition field of p in K_{p^a-1} . Then we can prove

Theorem 5. The endomorphism algebra $\mathcal{A}_0(A)$ of the main component A of J_a is the cyclic algebra over K:

$$(\prod^{a(p-1)}, \mathbf{Q}(\hat{\xi}_{\sigma}), \tau)$$

where σ is the automorphism of the curve C_a defined by (2), and τ is a generating automorphism of $Q(\xi_{\sigma})$ over K.

References

- H. Davenport and H. Hasse: Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math., 172, 151-182 (1935).
- [2] J. Tate: Endomorphisms of abelian varieties over finite fields. Inventiones Math., 2, 134-144 (1966).
- [3] A. Weil: Sur les courbes algébriques et les variétés qui s'en déduisent. Paris, Hermann (1948).

No. 6]