92. On the Jacobian Varieties of Davenport-Hasse Curves

By Toshihiko Yamada
Department of Mathematics, Osaka University
(Comm. by Kenjiro Shoda, m.J.A., June 12, 1967)

Let p be any prime number, and consider the Davenport-Hasse curves C_{a} defined by the equations

$$
\begin{equation*}
y^{p}-y=x^{p^{\alpha-1}} \quad(a=1,2,3, \cdots) \tag{1}
\end{equation*}
$$

over the prime field $G F(p)$. If we denote by θ a primitive ($p^{a}-1$) ($p-1$)-th root of unity in the algebraic closure of $G F(p)$, the map (2) $\sigma:(x, y) \rightarrow\left(\theta x, \theta^{p^{\alpha-1}} y\right)$
defines an automorphism of C_{a}, which generates a cyclic group G of order $\left(p^{a}-1\right)(p-1)$. In this note we shall investigate the following problems:

1. To determine the l-adic representation of the automorphism group G (Theorem 1).
2. The decomposition of the jacobian variety J_{a} of C_{a} into simple factors (Theorem 2,3).
3. To give explicitly generators of endomorphism algebra (Theorem 5).

Detailed proofs and other aspects of Davenport-Hasse curves will be published elsewhere.

The author thanks to Professor Morikawa for his kind encouragement.

1. If we put $z=y^{p-1}$, the curve C_{a} is birationally equivalent to a curve defined by the equation

$$
\begin{equation*}
x^{\left(p^{a}-1\right)(p-1)}=z(z-1)^{p-1} . \tag{3}
\end{equation*}
$$

The previous automorphism σ is given in this case by
(2$)^{\prime} \quad \sigma:(z, x) \rightarrow(z, \theta x)$.
Now the following lemma is easily proved.
Lemma 1. The smallest natural number f such that $p^{f} \equiv 1 \bmod$. $\left(p^{a}-1\right)(p-1)$ is equal to $a(p-1)$.

Owing to this lemma, θ belongs to the field $k=G F\left(p^{a(p-1)}\right)$. So the algebraic function field $k(z, x)$ defined by the equation (3) is a Kummer extension over $k(z)$ of degree $\left(p^{a}-1\right)(p-1)$, whose Galois group G is generated by σ. We denote by $\mathfrak{p}_{0}, \mathfrak{p}_{1}$, the prime divisors of $k(z)$ which are the numerators of principal divisors $(z),(z-1)$ respectively, and by \mathfrak{p}_{∞}, the denominator of (z). Then on account of the equation (3), every prime divisor of $k(z)$ other than $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\infty}$ is not ramified in $k(z, x)$. We shall make the table of behavior of
the $\mathfrak{p}_{i}(i=0,1, \infty)$ in $k(z, x)$, where the notation is as usual.

$k(z)$	$k(z, x)$	e	f	g
\mathfrak{p}_{0}	\mathfrak{F}_{0}	$\left(p^{a}-1\right)(p-1)$	1	1
\mathfrak{p}_{1}	$\mathfrak{P}_{1,1}, \cdots, \mathfrak{F}_{1, p-1}$	$p^{a}-1$	1	$p-1$
\mathfrak{p}_{∞}	\mathfrak{F}_{∞}	$\left(p^{a}-1\right)(p-1)$	1	1

Since the prime divisors $\mathfrak{F}_{0}, \mathfrak{F}_{1, i}(1 \leqslant i \leqslant p-1)$, \mathfrak{P}_{∞} of $k(z, x)$ have their degrees equal to one, they correspond respectively to the points $P_{0}, P_{1 i}(1 \leqslant i \leqslant p-1), P_{\infty}$ of the curve C_{a}. Let P be a point of C_{a} and n a positive integer. Let $V_{n}(P)$ be the n-th ramification group of P in G in the meaning of Weil [3]. Then, because of this table, we have

$$
\begin{align*}
V_{1}\left(P_{0}\right) & =V_{1}\left(P_{\infty}\right)=G \\
V_{1}\left(P_{1, i}\right) & =\left\{\sigma^{\nu} ; \nu \equiv 0 \bmod p-1\right\} \quad(1 \leqslant i \leqslant p-1) \tag{4}\\
V_{2}\left(P_{0}\right) & =V_{2}\left(P_{\infty}\right)=V_{2}\left(P_{1, i}\right)=\{e\} .
\end{align*}
$$

We denote by ξ_{α} the correspondences of C_{a} defined by the elements α of G. Then the ξ_{α} induce endomorphisms on the Tate group $T_{l}\left(J_{a}\right)$ of the jacobian variety J_{a} of C_{a}. So we have a representation of G in the field of l-adic numbers, which is also written as ξ_{α}. We denote by $\alpha_{P}(\alpha)$, for $\alpha \neq e$, the multiplicity of $P \times P$ in the intersection $\Delta \cdot \xi_{\alpha}$, where Δ is the diagonal of $C \times C_{a}$. We shall quote the result of Weil [3].

Lemma 2. The trace of the representation ξ_{α} of G in $T_{l}\left(J_{\alpha}\right)$ is given by the formula:

$$
\begin{align*}
& \operatorname{Tr}\left(\xi_{\alpha}\right)=2-\sum_{P} a_{P}(\alpha)(\alpha \neq e) \tag{5}\\
& \operatorname{Tr}\left(\xi_{e}\right)=2 g
\end{align*}
$$

where g is the genus of C_{a} and is equal to $\left(p^{a}-2\right)(p-1) 2$.
From this lemma and (4), we can get

$$
\operatorname{Tr}\left(\xi_{\sigma \nu}\right)=\left\{\begin{array}{cl}
-(p-1) & \nu \equiv 0 \bmod . p-1\left(\sigma^{\nu} \neq e\right) \tag{6}\\
0 & \nu \not \equiv 0 \bmod . p-1 .
\end{array}\right.
$$

Let ψ be a generator of the character group G^{*} of G. Then we have

$$
\operatorname{Tr}\left(\xi_{\alpha}\right)=\sum_{\mu=1}^{\left(p^{a}-1\right)(p-1)} c_{\mu} \psi^{\mu}(\alpha)
$$

where the coefficients c_{μ} are calculated by the relations of orthogonality of characters:

$$
c_{\mu}=\frac{1}{\left(p^{\alpha}-1\right)(p-1)} \sum_{\alpha \in \epsilon} \psi^{\mu}\left(\alpha^{-1}\right) \operatorname{Tr}\left(\xi_{\alpha}\right)
$$

From (5), (6) we get

$$
c_{\mu}= \begin{cases}1 & \mu \equiv 0 \bmod . p^{a}-1 \\ 0 & \mu \equiv 0 \bmod . p^{a}-1\end{cases}
$$

Thus we obtain

Theorem 1. The l-adic representation ξ_{α} in $T_{l}\left(J_{a}\right)$ of the automorphism group G is the direct sum of the irreducible representations ψ^{ν} of multiplicity one, where ν runs from 1 to ($p^{a}-1$) $\cdot(p-1)$ except $\nu \equiv 0 \mathrm{mod} . p^{a}-1$.
2. In the first place we shall summarize the fact about the prime ideal decompositions of characteristic roots of Frobenius endomorphism (Davenport-Hasse [1]). Let χ be a character of order $p^{a}-1$ of $G F\left(p^{a}\right)^{*}$. Then the characteristic roots of p^{a}-th endomorphism on J_{a} are

$$
\begin{equation*}
\tau_{j}\left(\chi^{t}\right)=-\sum_{u \neq 0} \chi^{t}(u) \exp \left[\frac{2 \pi i j}{p} \operatorname{tr}(u)\right] \quad\binom{t=1, \cdots, p^{a}-2}{j=1, \cdots, p-1} \tag{7}
\end{equation*}
$$

Hereafter we shall put $q=p^{a}$. We denote by K_{n} the field of the n-th roots of unity over the field \boldsymbol{Q} of rational numbers. Then the $\tau_{j}\left(\chi^{t}\right)$ belong to $K_{p(q-1)}$. The automorphism group of K_{q-1} over \boldsymbol{Q} is isomorphic to the group R of prime residue-classes mod. $q-1$. Denote by P the subgroup of R which is generated by $p \bmod . q-1$, and let ρ run through representatives of the factor group $R / P: R$ $=\sum_{\rho} \rho P$. Then the prime ideal decompositions of p in K_{q-1} and $K_{p(q-1)}$ can be written as follows:

$$
(p)=\prod_{\rho} \mathfrak{p}_{\rho} \text { in } K_{q-1},(p)=\prod_{\rho} \mathfrak{S}_{\rho}^{p-1} \text { in } K_{p(q-1)}
$$

For the sake of simplicity, we put $\tau\left(\chi^{t}\right)=\tau_{1}\left(\chi^{t}\right)$. Then it is easy to see that

$$
\tau\left(\chi^{t}\right) \rightarrow \chi^{-1}(j) \tau\left(\chi^{t}\right)=\tau j\left(\chi^{t}\right) \quad(1 \leqslant j \leqslant p-1)
$$

by the automorphisms $\exp \left(\frac{2 \pi i}{p}\right) \rightarrow \exp \left(\frac{2 \pi i}{p} j\right)$ of $K_{p(q-1)}$ over K_{q-1}. For a rational integer α, we denote by $\lambda(\alpha)=\alpha_{0}+\alpha_{1} p+\cdots+\alpha_{a-1} p^{a-1}$ $\left(0 \leqslant \alpha_{i} \leqslant p-1\right.$, not all $\left.\alpha_{i}=p-1\right)$ the smallest non-negative residue of $\alpha \bmod . q-1$, and put $\sigma(\alpha)=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{a-1}$. Then the prime ideal decompositions are as follows:

$$
\begin{array}{ll}
\left(\tau\left(\chi^{t}\right)\right)=\prod_{\rho} \mathfrak{P}_{\rho}^{\sigma(\rho t)} & \text { in } K_{p(q-1)} \tag{8}\\
\left(\tau\left(\chi^{t}\right)^{p-1}\right)=\prod_{\rho} \mathfrak{p}_{\rho}^{\sigma(\rho t)} & \text { in } K_{q-1}
\end{array}
$$

We shall say that $\tau_{j}\left(\chi^{t}\right)$ and $\tau_{i}\left(\chi^{s}\right)$ are equivalent when there exist natural numbers n, m such that $\tau_{j}\left(\chi^{t}\right)^{m}$ and $\tau_{i}\left(\chi^{s}\right)^{n}$ are conjugate to each other as algebraic numbers. Then, this is an equivalence relation. Let J_{a} be isogenous to a product:
(9) $\quad J_{a} \sim A_{1} \times A_{2} \times \cdots \times A_{h}, A_{i}=B_{i} \times \cdots \times B_{i} \quad(i=1, \cdots, h)$,
where the B_{i} are simple abelian varieties not isogenous to each other. Then the $A_{i}(i=1, \cdots, h)$ are in one-to-one correspondence to the equivalence classes of the $\tau_{j}\left(\chi^{t}\right)$ (Tate [2]).

The following lemma is easily checked.
Lemma 3. For $0<\alpha<p^{a}-1$ we have
i) $1 \leqslant \sigma(\alpha) \leqslant \alpha(p-1)-1$,
ii) $\sigma(\alpha)=1$ if and only if $\alpha=p^{i}(0 \leqslant i \leqslant \alpha-1)$,
iii) $\sigma(\alpha)=\alpha(p-1)-1$ if and only if $\alpha=p^{a}-1-p^{i}(0 \leqslant i \leqslant a-1)$.

Suppose that t satisfies $\left(t, p^{a}-1\right)=d>1$, then $\left(\lambda(\rho t), p^{a}-1\right)=d$, and by this lemma $\sigma(\rho t)$ cannot take the value 1 nor the value $a(p-1)-1$ for any ρ. On account of this fact and the prime ideal decomposition (8) of $\tau\left(\chi^{t}\right)$, we can conclude the following

Proposition 1. If t satisfies $\left(t, p^{a}-1\right)>1$, then $\tau(\chi)$ and $\tau\left(\chi^{t}\right)$ are not equivalent.

Corollary. The set $\left\{\tau_{j}\left(\chi^{\mu}\right) ;\left(\mu, p^{a}-1\right)=1,1 \leqslant \mu<p^{a}-1,1 \leqslant j \leqslant p-1\right\}$ fills up just an equivalence class of the $\tau_{j}\left(\chi^{t}\right)$.

We denote by K the decomposition field of p in K_{q-1}, and put $\boldsymbol{Q} \tau(x)=\bigcap_{\mu=1}^{\infty} \boldsymbol{Q}\left(\tau(\chi)^{\mu}\right)$. Then from lemma 3, we are able to see that $\boldsymbol{Q}_{\tau(x)}$ contains K. To show that the converse is also true, we need the following lemma which can be deduced from the expression of $\tau(\chi)$ as a Gaussian sum.

Lemma 4. $\tau(\chi)$ is invariant under the automorphisms $\exp \frac{2 \pi i}{q-1}$ $\rightarrow \exp \frac{2 \pi i}{q-1} p^{i}(i=1, \cdots, a)$ of $K_{p(q-1)}$ over K_{p}.

After all we can reach at the equality:
$\boldsymbol{Q}_{\tau(\chi)}=\boldsymbol{Q}\left(\tau(\chi)^{p-1}\right)=K$.
Now in the expression (9) of J_{a} as a product, let A_{1} correspond to the equivalence class, to which $\tau(\chi)$ belongs (Prop. 1, Coroll.). Hereafter we put $A=A_{1}$. By virtue of what has been outlined, we may apply results of Tate [2] to our case.

Proposition 2. i) The endomorphism algebra $\mathcal{A}_{0}(A)$ of A is a central simple algebra over K, which splits at all finite primes of K not dividing p.
ii) The local invariants of $\mathscr{A}_{0}(A)$ at the primes \mathfrak{p}_{ρ} are given by

$$
\operatorname{inv}_{\mathfrak{p}_{p}}\left[\mathscr{A}_{0}(A)\right] \equiv \frac{\sigma(\rho)}{a(p-1)} \bmod . \boldsymbol{Z}
$$

iii) The dimension of the simple constituent B of A is $\operatorname{dim} B$ $=(p-1) \cdot \varphi\left(p^{a}-1\right) / 2$.

From Proposition 2, iii), we know that A is a simple abelian variety. Hence we have

Theorem 2. The jacobian variety J_{a} of the curve C_{a} contains as simple component the simple abelian variety A with multiplicity one, which has $\tau(\chi)^{p-1}$ as a characteristic root of the $p^{\alpha(p-1)}$-th endomorphism. (We may say that A is the main component of J_{a}.)

As for the problem of the complete decomposition of J_{a} into simple factors, we can prove the following

Theorem 3. For $a=1$, we have

$$
J_{1} \sim \prod_{t}\left(B_{t} \times \cdots \times B_{t}\right) \quad\left(\text { each } B_{t} \text { appears } t \text { times }\right)
$$

where the index t runs over all divisors of $p-1$ except $t=p-1$, and each B_{t} is a simple abelian variety which has $\tau\left(\chi^{t}\right)$ as a characteristic root, and B_{t} is not isogenous to $B_{t^{\prime}}$ for $t \neq t^{\prime}$.
3. According to the notation of (9), the Tate group $T_{l}\left(J_{a}\right)$ is the direct sum of the Tate groups $T_{l}\left(A_{i}\right)$. Since the endomorphisms ξ_{α} of $T_{l}\left(J_{a}\right)$ induce endomorphisms $\xi_{\alpha}^{(i)}$ on each $T_{l}\left(A_{i}\right)$, the representation ξ_{α} on $T_{l}\left(J_{a}\right)$ of the automorphism group G of the curve C_{a} is the direct sum of the representations $\xi_{\alpha}^{(i)}$ on $T_{l}\left(A_{i}\right)$. Let as before $A=A_{1}$ be the main component of J_{a}. Then we have

Theorem 4. The representation $\xi_{\alpha}^{(1)}$ of G on $T_{l}(A)$ is the direct sum of the irreducible representations ψ^{ν} of multiplicity one, where ν runs through representatives of prime residue classes $\bmod .\left(p^{a}-1\right)(p-1)$.

Outline of proof. As $\mathcal{A}_{0}(A)$ is a division algebra, the characteristic roots of $\xi_{\sigma}^{(1)}$ are conjugate to each other. On the other hand the characteristic roots of ξ_{σ} are, by Theorem $1,\left\{\psi^{\nu}(\sigma) ; \nu=1, \cdots\right.$, $\left.\left(p^{a}-1\right)(p-1), \nu \not \equiv 0 \bmod . p^{a}-1\right\}$. From these facts and the equality $\varphi\left(\left(p^{a}-1\right)(p-1)\right)=(p-1) \cdot \varphi\left(p^{a}-1\right)=2 \operatorname{dim} A$, the assertion may be deduced.

Corollary. $\boldsymbol{Q}\left(\xi_{\sigma}^{(1)}\right)$ is the field $K_{\left(p^{a}-1\right)(p-1)}$ of $\left(p^{a}-1\right)(p-1)$-th roots of unity.

Although the structure of the algebra $\mathcal{A}_{0}(A)$ is determined by Proposition 2, we shall give generators of $\mathcal{A}_{0}(A)$ explicitly. The p-th endomorphism Π and the endomorphism ξ_{σ} of J_{a} induce endomorphisms of A, which are again denoted by Π and ξ_{σ} respectively. Let K denote the decomposition field of p in $\boldsymbol{Q}\left(\xi_{\sigma}\right)$, which is also the decomposition field of p in $K_{p^{a_{-1}}}$. Then we can prove

Theorem 5. The endomorphism algebra $\mathcal{A}_{0}(A)$ of the main component A of J_{a} is the cyclic algebra over K :

$$
\left(\prod^{a(p-1)}, \boldsymbol{Q}\left(\xi_{\sigma}\right), \tau\right)
$$

where σ is the automorphism of the curve C_{a} defined by (2), and τ is a generating automorphism of $\boldsymbol{Q}\left(\xi_{\sigma}\right)$ over K.

References

[1] H. Davenport and H. Hasse: Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math., 172, 151-182 (1935).
[2] J. Tate: Endomorphisms of abelian varieties over finite fields. Inventiones Math., 2, 134-144 (1966).
[3] A. Weil: Sur les courbes algébriques et les variétés qui s'en déduisent. Paris, Hermann (1948).

