157. On Normal Analytic Sets. II

By Ikuo Kimura

Kōbe University
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1967)
I have studied conditions for an analytic set being normal and obtained the following [1]. ${ }^{1)}$

Theorem 1. If \sum is normal at 0 , then \sum satisfies the conditions (α) and (β). Moreover, when \sum is principal, \sum is normal at 0 if and only if \sum satisfies the conditions (α) and (β).

The two conditions in Theorem 1 are the following.
Condition (α). ${ }^{2)}$ Let $\left(x^{0}, y^{0}\right)$ be a point sufficiently near 0 , such that $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$. Let

$$
z_{\mu}=z_{\mu}^{(i)}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(i, \mu)}(x)(y-\varphi(x))^{\frac{\nu}{p i}}, 1 \leqslant \mu \leqslant e, 1 \leqslant i \leqslant \kappa,
$$

be the systems of Puiseux-series, attached to $\left(x^{0}, y^{0}\right)$. Then, for i, j, $i \neq j$, there exists an index $\mu, 1 \leqslant \mu \leqslant e$, such that we have $c_{0}^{(i, \mu)}\left(x^{0}\right) \neq c_{0}^{(j, \mu)}\left(x^{0}\right)$.

Condition ($\boldsymbol{\beta}$). Let $\left(x^{0}, y^{0}\right)$ be a point sufficiently near 0 , such that $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$. Let

$$
z_{\mu}=z_{\mu}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}, \quad 1 \leqslant \mu \leqslant e,
$$

be a system of Puiseux-series, attached to (x^{0}, y^{0}), such that $p>1$. Then we have $c_{1}^{(\mu)}(x) \not \equiv 0$ for an index $\mu, 1 \leqslant \mu \leqslant e$.

The notations given in [1] are used in the above statements and will be in the following.

In this note, two conditions are newly introduced to improve Theorem 1. Consider the following.

Condition ($\boldsymbol{\gamma}$). Let $\left(x^{0}, y^{0}\right)$ be a point sufficiently near 0 , such that $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$. Let

$$
z_{\mu}=z_{\mu}^{(i)}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(i, \mu)}(x)(y-\varphi(x))^{\frac{\nu}{p i}}, 1 \leqslant \mu \leqslant e, 1 \leqslant i \leqslant \kappa,
$$

be the systems of Puiseux-series, attached to $\left(x^{0}, y^{0}\right)$. Then, for i, j, $i \neq j$, there exists an index $\mu, 1 \leqslant \mu \leqslant e$, such that we have $c_{0}^{(i, \mu)}(x) \not \equiv c_{0}^{(j, \mu)}(x)$.

[^0]Condition (δ). Let $\left(x^{0}, y^{0}\right)$ be a point sufficiently near 0 , such that $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$. Let

$$
z_{\mu}=z_{\mu}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}, 1 \leqslant \mu \leqslant e,
$$

be a system of Puiseux-series, attached to $\left(x^{0}, y^{0}\right)$, such that $p>1$. Then we have $c_{1}^{(\mu)}\left(x^{0}\right) \neq 0$ for an index $\mu .1 \leqslant \mu \leqslant e$.

We see that 1) (α) induces (γ) and 2) (δ) induces (β). And we have first

Proposition 6. If \sum is normal at 0 , it satisfies the condition (δ).

Proof. Suppose that Σ is normal at 0: then, by Prop. 3, [1], we see that \sum satisfies the condition (α). Suppose that \sum does not satisfy the condition (δ); then there exist a point (x^{0}, y^{0}, z^{0}), close to 0 and satisfying $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$, and a system passing through (x^{0}, y^{0}, z^{0}):

$$
z_{\mu}=z_{\mu}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}, 1 \leqslant \mu \leqslant \mathrm{e}
$$

with $p>1$ and $c_{1}^{(\mu)}\left(x^{0}\right)=0,1 \leqslant \mu \leqslant \mathrm{e}$. The system describes \sum completely in a neighborhood of (x^{0}, y^{0}, z^{0}).

Consider the function $h=(y-\varphi(x))^{\frac{1}{p}}$ which is holomorphic on Σ in a neighborhood of $\left(x^{0}, y^{0}, z^{0}\right)$. By hypothesis, there exists a function $H(x, y, z)$ holomorphic in the space (x, y, z) and representing h in a small closed polydisc U about $\left(x^{0}, y^{0}, z^{0}\right)$. Expand H into powerseries:

$$
H(x, y, z)=\sum_{i=0}^{\infty} b_{i}(x, z)(y-\varphi(x))^{i}
$$

where $b_{i}(x, z)$ are holomorphic in the polydise $U_{1}=\{(x, z) \mid(x, y, z) \in U\}$. We have then

$$
\begin{equation*}
(y-\varphi(x))^{\frac{1}{p}}=b_{0}(x, z)+O((y-\varphi(x))) \quad \text { for } \quad(x, y, z) \in \sum \cap U \tag{1}
\end{equation*}
$$

Let expand $b_{0}(x, z)$ into power-series:

$$
b_{0}(x, z)=\sum_{i_{1}, \ldots, i_{e}=0}^{\infty} b_{i_{1} \cdots i_{e}}(x)\left(z_{1}-c_{0}^{(1)}(x)\right)^{i_{1}} \cdots\left(z_{e}-c_{0}^{(e)}(x)\right)^{i_{e}},
$$

where $b_{i_{1}} \cdots_{i_{e}}(x)$ are holomorphic in the polydisc $U_{2}=\left\{x \mid(x, z) \in U_{1}\right\}$. Here we have $b_{0 \ldots 0}(x) \equiv 0$, since we have

$$
b_{0}(x, z)=0 \quad \text { for } \quad z_{\mu}=c_{0}^{(\mu)}(x), 1 \leqslant \mu \leqslant e,(x, z) \in U_{1}
$$

Consequently, for $(x, y, z) \in \sum \cap U$, we have

$$
\begin{equation*}
b_{0}(x, z)=C(x)(y-\varphi(x))^{\frac{1}{p}}+O\left((y-\varphi(x))^{\frac{2}{p}}\right) \tag{2}
\end{equation*}
$$

We see that $C\left(x^{0}\right)=0$, since $c_{1}^{(\mu)}\left(x^{0}\right)=0,1 \leqslant \mu \leqslant e$. From (1) and (2), we have

$$
(y-\varphi(x))^{\frac{1}{p}}=C(x)(y-\varphi(x))^{\frac{1}{p}}+O\left((y-\varphi(x))^{\frac{2}{p}}\right)
$$

for (x, y) near (x^{0}, y^{0}); this is impossible at $x=x^{0}$.
Q.E.D.

From Prop. 3, [1] and Prop. 6, we have

Theorem 3. If \sum is normal at 0, it satisfies the conditions (α) and (δ).

Theorem 1 induces
Corollary. Suppose that \sum is principal. Then \sum is normal at 0 if and only if \sum satisfies the conditions (α) and (δ).

Remark. If \sum is principal, then 1) (α) is equivalent to (γ) and 2) (β) is equivalent to (δ). Both of 1) and 2) are proved mainly by Lemme 1, p. 139, [2].

In general cases, we have
Theorem 4. Let \sum_{0} be the set of non-normal points of \sum. Then the dimension of \sum_{0} at 0 does not exceed $d-2$, if and only if \sum satisfies the conditions (β) and (γ).

Proof. 1) Suppose that \sum satisfies these conditions and \sum_{0} has dimension $>d-2$ at 0 . Then, near 0 , there exists a regular point $\left(x^{0}, y^{0}, z^{0}\right)$ of \sum_{0}, at which \sum_{0} has dimension $>d-2$. Let $P_{\mu}(x, y, t), 1<\mu \leqslant e$, be distinguished pseudo-polynomials in t, such that $\sum \cap C$ is contained in the set

$$
P\left(x, y, z_{1}\right)=P_{2}\left(x, y, z_{2}\right)=\cdots=P_{e}\left(x, y, z_{e}\right)=0
$$

Then, if, in a neighborhood U of $\left(x^{0}, y^{0}, z^{0}\right), \sum_{0}$ is contained in the set $\{\delta(x)=0\}$, we have necessarily

$$
\sum_{0} \cap U \subset\left\{\delta(x)=f(x, y)=P\left(x, y, z_{1}\right)=\cdots=P_{e}\left(x, y, z_{e}\right)=0\right\}
$$

the second member of which has dimension $\leqslant d-2$: this is impossible. Consequently there exists a regular point (x^{1}, y^{1}, z^{1}) of \sum_{0}, close to $\left(x^{0}, y^{0}, z^{0}\right)$ and such that $\delta\left(x^{1}\right) \neq 0, f\left(x^{1}, y^{1}\right)=0 ; \sum_{0}$ has dimension $>d-2$ at (x^{1}, y^{1}, z^{1}). Let

$$
z_{\mu}=z_{\mu}^{(i)}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(i, \mu)}(x)(y-\varphi(x))^{\frac{\nu}{p_{i}}}, 1 \leqslant \mu \leqslant e, 1 \leqslant i \leqslant \kappa,
$$

be the systems attached to $\left(x^{1}, y^{1}\right)$ and let

$$
\delta^{\prime}(x)=\delta(x) \Pi\left(c_{0}^{(i, \mu)}(x)-c_{0}^{(j, \mu)}(x)\right),
$$

where the product Π is taken over those i, j, μ such that $i \neq j$ and $c_{0}^{(i, \mu)}(x) \not \equiv c_{0}^{(j, \mu)}(x)$: if $\kappa=1$, we set $\delta^{\prime}(x)=\delta(x)$.

We can prove that, in any neighborhood of (x^{1}, y^{1}, z^{1}), \sum_{0} is not contained in the set $\left\{\delta^{\prime}(x)=0\right\}$, as in the proof of $\sum_{0} \cap U \not \subset\{\delta(x)=0\}$. Hence there exists a point $\left(x^{2}, y^{2}, z^{2}\right) \in \sum_{0}$, close to $\left(x^{1}, y^{1}, z^{1}\right)$ and such that $\delta^{\prime}\left(x^{2}\right) \neq 0, f\left(x^{2}, y^{2}\right)=0 ; \sum_{0}$ is regular and has dimension $>d-2$ at $\left(x^{2}, y^{2}, z^{2}\right)$. The systems attached to (x^{2}, y^{2}) are given by those which are attached to $\left(x^{1}, y^{1}\right): \delta^{\prime}\left(x^{2}\right) \neq 0$ induces that only one of those systems passes through (x^{2}, y^{2}, z^{2}). Let

$$
z_{\mu}=z_{\mu}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}, 1 \leqslant \mu \leqslant e
$$

be such a system. We have $p>1$, since $\left(x^{2}, y^{2}, z^{2}\right) \in \sum_{0}$ Accordingly, we have $c_{1}^{\left(\mu_{0}\right)}(x) \not \equiv 0$ for an index μ_{0}, and, in a neighborhood of (x^{2}, y^{2}, z^{2}), \sum_{0} is contained in the set

$$
c_{1}^{\left(\mu_{0}\right)}(x)=0, y=\varphi(x), \quad z_{\mu}=c_{0}^{(\mu)}(x), 1 \leqslant \mu \leqslant e,
$$

which is empty or of $d-2$ dimension at $\left(x^{2}, y^{2}, z^{2}\right)$. This is a contradiction.
2) Suppose that \sum does not satisfy the condition (γ); then there exist a point $\left(x^{0}, y^{0}, z^{0}\right) \in \sum$, close to 0 and such that $\delta\left(x^{0}\right) \neq 0$, $f\left(x^{0}, y^{0}\right)=0$, and two systems attached to (x^{0}, y^{0}, z^{0}):

$$
z_{\mu}=z_{\mu}^{(i)}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(i, \mu)}(x)(y-\varphi(x))^{\frac{\nu}{p_{i}}}, 1 \leqslant \mu \leqslant e, \quad i=1,2
$$

with $c_{0}^{(1, \mu)}(x) \equiv c_{0}^{(2, \mu)}(x), 1 \leqslant \mu \leqslant e$. At each point of the set

$$
\sum_{0}: y=\varphi(x), \quad z_{\mu}=z_{\mu}^{(1)}(x, y), \quad 1 \leqslant \mu \leqslant e,
$$

\sum has at least two irreducible components. Consequently \sum_{0} has dimension $>d-2$ at $\left(x^{0}, y^{0}, z^{0}\right)$ and therefore at 0 .

If \sum does not satisfy the condition (β), then there exist a point $\left(x^{0}, y^{0}, z^{0}\right) \in \sum$, close to 0 and such that $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$ and a system attached to (x^{0}, y^{0}, z^{0}):

$$
z_{\mu}=z_{\mu}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}, 1 \leqslant \mu \leqslant e,
$$

with $p>1$ and $c_{1}^{(\mu)}(x) \equiv 0,1 \leqslant \mu \leqslant e$. At each point of the set
$\sum_{0}^{\prime \prime}: y=\varphi(x), z_{\mu}=z_{\mu}(x, y), 1 \leqslant \mu \leqslant e$,
\sum is not normal, as we have seen in the proof of Prop. 6. This implies that \sum_{0} has dimension $>d-2$ at $\left(x^{0}, y^{0}, z^{0}\right)$ and therefore at 0 .

References

[1] I. Kimura: On normal analytic sets. Proc. Japan Acad., 43 (6), 464-468 (1967).
[2] K. Oka: Sur les fonctions analytiques de plusieurs variables. Iwanami Shoten (1961).

[^0]: 1) Prof. K. Kasahara has kindly pointed out, with a counter example, the incredibility of Theorem 2, [1]. And I found out several errors in [1]. In [1], the propositions and theorems need the assumption that Σ is principal, except for Propositions 3, 4: the reader would take care of the fact that, even if Σ is nonprincipal, the "only if" parts of Propositions 1, 2 however are true. Theorem 1, [1] should therefore be corrected as in the present paper.
 2) The condition (α) in [1] was incorrect and should be thus revised.
