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185. A Note on the Generation of Nonlinear
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By Shinnosuke OHARU
Waseda University, Tokyo
(Comm. by Kinjird KUNUGI, M.J.A., Nov. 13, 1967)

1. Let X be an (F'M)-space, i.e., a Frechet space which is
also a Montel space. For example, the space H(2) of holomorphic
functions on a domain 2 in the complex plane, which is endowed
with the topology of locally uniform convergence, the space (§) of
rapidly decreasing functions on R" and R" are this space.

For a not necessarily linear operator A from X into itself, we
introduce the following conditions:

(1) There exists a positive constant 6>0 such that for each
h € (0, 07, the topological inverse mapping (I—hA)~* of the mapping
x—x—hAx exists on X as a single valued operator.

(2) For any T>0, the family of operators {(I—hA)~"} is equi-
continuous on X in ke (0, 6] and n with An e [0, T]. (Put (I—hA)°
=1, the identity mapping.)

(3) For any 2 e D(A) and for any T>0, the set {A(J—hA)"x:
he(0,0], hne[0, T]} is bounded in X,

Definition 1. A mnot necessarily linear operator A from X to
itself is said to be of class W if for this A all of the above
conditions are satisfied.

In the case that A is a densely defined closed linear operator,
the well-known necessary and sufficient condition for A being the
infinitesimal generator of an equicontinuous semigroup is rather
stronger than the condition A< 2. We mention here some remarks
on the abovementioned conditions:

(i) From (3) it follows that for any x € X the set {(I—hA)"x:
he(0,0], ine[0, T]} is bounded in X,

(ii) From (2) it follows that if D(A4)>x,—« and Ax,—y, then
xe D(A) and Ax=y.

(ili) The following condition implies (2) and (3):

For any xe€ X and T>0 there exists a neighbourhood U(x) of
2 such that for any continuous seminorm p there exists a continuous
seminorm ¢ which is independent of A e(0,0],n with hne[0, T]
and ze U(x), such that

((I—hA)y " —(I—hA)"2)=q(x—2), ze U(x).

(iv) If A maps bounded sets in D(A) into bounded sets, then
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(8) can be replaced by the following

(3) For any T>0 there exists an xz,€ X such that the set
{(I—hA)y "%, he(0,06], hne[0, T]} is bounded in X,

Next we give the definitions of the semigroup of nonlinear
operators and the infinitesimal generator.

Definition 2. Let D be a closed subset in X. A one parameter
Samaly {T(t)}zo of continuous mappings from D into itself is called
to be a (nonlinear) semigroup on D, if the following conditions
are satisfied:

(4) TO)=I, Tt+s)=T@)T(s) on D, t, s=0.

(5) For each xe D, T(t)x is strongly continuous in t=0.

And a semigroup {T(t)} on D is called to be locally equicontinuous
if for any s>0,{T(t)} is equicontinuous on D in te[0,s].

Definition 3. We define the infinitesimal generator A, of a
semigroup {T(t)},», mentioned above by

A ZIhIE)l (T (h)x—x)

whenever the limit exists.

Lately K. Kojima [2] gave the following result*: Let A be a
continuous mapping on X into itself, for which (1), (2), and (3)’ are
satisfied. Then it generates a nonlinear locally equicontinuous
semigroup {7T(¢)} on X in such a way that for each ze X, T(¢t)x is
continuously differentiable at all t=0 and T"(t)x=AT(t)x, t=0.

In this paper we shall treat the generation of nonlinear semi-
groups for the mapping of class 2 defined above. The main result
is the following

Theorem. Any mapping A of class A generates a nonlinear
locally equicontinuous semigroup {T(t)}zo on D(A) in such a way
that for each x e D(A),

(6) T(t)xeD(A) for all t=0,

(7)) T@)x is continuously differentiable on t=0 and

T'(t)yx=AT(t)x, t=0.

Moreover let A, be its infinitesimal generator. If for some
hy€ (0, 07, I—h,A, is injective, i.e., for any pair of distinct elements
xz,y of D(AYI—h,Ap)x+(I—h,A)y, then A,=A.

2. Before proving the above theorem, we shall mention some
important properties of (F'M)-space, in the following

Proposition. Let X be an (FM)-space. Then the following
assertions are true:

(a) Any bounded set is sequentially compact.

(b) Any weakly convergent sequence is also strongly convergent

*)  He obtains the result in the complete locally convex space such that it is
separable and every bounded closed subset is sequentially compact.
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to the same limit,

() X is weakly sequentially complete as well as sequentially
complete.

(d) Both X and the dual X* are separable in the semse that
there exists a countable dense subset {x,}CX (resp. {®}}cX*) and
every element is the strong limit of a subsequence of {x,} (resp.
{x)).

The proof is omitted. See Kothe [4] and Edwards [5].

Now we give some notations used throughout this paper: We
denote any strictly monotone increasing sequence of positive numbers
tending to the infinity by {r.} and put T(n, t)={I—7r;'A)""»*? (where
[ ] is the Gaussian blacket.) which are well-defined on X for all
sufficiently large n.

Lemma. Let AcU. Then there exists a subsequence {n,} of
{n} such that }‘im T(n,, t)yx=T(t)x exists for each x € D(A). And for
any s>0, {T(t)} is equicontinuous on D(A) in te[0,s].

Proof. For any x e D(A) and ¢=0, since »,;'[r,t]<t, it follows
from (i) that {T(n, t)x}, is bounded in X, and so, from (a) of
Proposition there exists a subsequence {n,} of {n} such that
lim T(n;, t)x exists. And D(A) is separable with respect to the

relative topology, because X is a metric space. Let {¢{;} be the
totality of rational numbers in [0, co) and {x;} be a countable dense
subset in D(A). Then from the usual diagonal procedure we can
find a subsequence {n,} of {n} such that the limits lkim T(n,, t;)x;
exist for all 7 and 7. -

Let [0, T] be a sufficiently large interval containing the ¢ in
question. From the simple calculation we have

[r,t]
SV AT — 1t A e = T, t)x —x+r;{Ac— AT(n, t)x}.
k=1
Since for any x* e X*, x*AT(n, s)x is a step function on [0, T'], we
get
(8) 2*(T(nm, tyx—a)= Stx*AT(n, s)x ds

t

[rpt]

2*AT(n, s)x ds.

+rw*{AT(n, t)x— Az} + S

From (3) {AT(n, s)x: 0<s<T, n} is bounded and so, x*AT(n,s)x is
bounded measurable on [0, T]. Thus for any t,t' € [0, T] we have
T

(9) |a*T(n, )x—a*T(n,t x|
<0(t—t |)+O(r;1)+0<l—[”t] —t.>+0<‘—.—[“t'] =4)
Tn
where O’s depend only on xe D(A), z*e X* and T>0.
It follows from (9) that {T(n., t)x;}, becomes a Cauchy
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sequence in the weak sense for each t=0. Thus from (¢) and (b),
lle T(ny, t)a; exists for each t=0 and each 4. Since {T(n,t)}, is
equicontinuous, {T(n,, t)x} becomes a Cauchy sequence for each ¢=0
and each z e D(A) (and consequently for each x € D(A)). Therefore
hm T(n,, t)x exists for each t=0 and v € D(A). This convergence

holds uniformly in ¢ of every bounded interval [O, T].

We put llm T(n, tyx=T(t)x on D(A). Since {T(n,, t)}, is equi-
continuous on a metric space D(A), T(n,, t) converges continuously
to T(t) on D(A) (see Rinow [6] p. 63). Take an arbitral s>0.
Then since {T(n, t)} is equicontinuous on D(A) in n and te[0,s]
from (2), it follows that {7T(¢)} is equicontinuous on D(A) in t € [0, s].

Proof of the theorem. Letting k—oo in (9), we have

| 2*(T(t)x— T(ENx) | <O t—t')), t=t'=0,xe D(A), x* e X*,
where 0 depends on 2 and z* and 7T>0. Since 7T is arbitral,
T(t)x is weakly continuous in ¢=0 and so, strongly continuous in
t=>0. Since {T(t)}o<:<r is equicontinuous on D(A) from Lemma,
T(t)yx is strongly continuous in ¢=>0 for each xz ¢ D(A).

From (3), {AT(n,, t)x}, is bounded for each ze D(A) and ¢=0
and so, there exists a subsequence AT(n;, t)x converging to some
element y(¢). Thus from (ii), T(t)x e D(A) for each ¢t=0 and
lim AT(n;, t)yo=AT(t)x. Here we may take the original sequence {n,}
as this subsequence {n,}. Since AT(t)x is bounded on every finite
interval [0, T'], again from (ii) it follows that AT(t)x is strongly
continuous in ¢=0. Therefore since X is sequentially complete, the

Riemann integral StAT(s)a; ds is defined in X for every t=0.
0
Thus letting k—oo in (8), it follows from the dominated con-
vergence theorem and the abovementioned that

o*(T(t)s — o) = S:x*AT(s)x ds:m*g:AT(s) zds

for each ¢=0, x ¢ D(A) and each x2* ¢ X*. Thus we have
T(t)w — o= StAT(s)x ds,  t=0,xeD(A).
0

Therefore T(t)x is strongly continuously differentiable and we have

M.

From the abovementioned, if x e D(A) then T(t)x e D(A) for all
t=0. Thus from the continuity of each T(t) on D(A), if e D(A)
then T(t)x e D(A) for all t=0. Thus T(t) is a continuous mapping
from D(A) into itself. Take any neighborhood V of 0 and x € D(4).
Since [r,(s+t)]—[7r,s]—[r.t]=¢ is 0 or 1, we have T(n,s+t)x
—T(n, s)T(n, t)x € V for all sufficiently large n. Since {T(n, )}, is
equicontinuous on D(A), the above estimate holds good for each
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x € D(A). Thus from the convergence T(n,, t)—T(t) on D(A) and
the equicontinuity of {T(n,, t)};, it follows that for each < D(A)
and for all sufficiently large u,, T(s+t)x— T(s)T(t)x €4V. Thus
{T(t)},z, satisfies (4).

Finally, let A, be the infinitesimal generator of the above
{T(t)}. Then clearly A,2A. If A,24, then it can be proved that
the topological inverse mapping of I—h,4, must be multiple valued,
which contradicts to the fact that I—h,4, is injective.
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