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In his paper [i], E. Dubinsky states the following fixed point
theorem:

Let X0 be an open neighborhood of 0 in a complete locally convex
space E, and let f be a mapping of x0+ X0, where x0 e E, into E
satisfying the condition that there exist a non-empty closed bounded
convex subset B of X0 and a non-negative real number k< 1 such that

x, y e x0+ X0 and x-y e 2B imply f(x)-f(y) e 2kB.
Then if f(Xo)- Xo e (1- k)B, f has a unique fixed point in x0 + B.

The proof is, in a sense, analogous to that of the well-known
Banach contraction theorem, and so it will be natural to ask the
relation between these two theorems. The purpose of this note is
to clarify the positions of these theorems. That is we shall state
a basic theorem (Theorem 1 below) from which these theorems follow,
and we shall give a slight generalization of the theorem of Dubinsky
(Theorem 2).

The vector spaces we shall be concerned with in this note are
over the real number field R or the complex number field. We employ
the following notations: [0, ]-={ e R; 0<_<_} and [0, )--{ e R;
0_< $<} where a is a positive real number.

1. A triple <X, D, d> of a set X, a subset D of XxX and a
non-negative real valued function d defined on D is called a premetric
space (and d a premetric for X with domain D) if the following two
conditions are satisfied:

(P 1) For every x e X, (x, x) e D, and d(x, x)-O.
(P 2) If (x, y), (y, z) e D, then (x, z) e D and

d(x, z)

_
d(x, y) / d(y, z).

Let (X, D, d be a premetric space. If M is a subset of X,
then (M,D (MM),dI() is also a premetric space, where
dl.() denotes the restriction of d to D (MM); we shall call
it a subspace of (X, D, d and denote simply by M.

If d is a premetric for a set X with domain D, then by setting
d*(x, y)-d(y, x) for every (y, x) e D, a premetric d* for X With domain
{(x, y); (y, x) e D} is obtained; we shall call d* the dual premetric of d.

A sequence {x.} in a premetric space (X, D, d is r-convergent
to x e X if (x, x,) e D for every n, and if there exists, for each e 0,
a positive integer no such that d(x,x,)e whenever n>__no. A
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sequence is 1-convergent to x if it is r-convergent to x relative to
the dual premetric of d. We say that a premetric space (X, D,
is r-separated if every sequence in X is r-convergent to at most one
point of X. If (X, D, d} is an r-separated premetric space, then as
can be readily seen d(x, y)-O implies x-y. It is clear that each
subspace of an r-separated premetric space is r-separated. A sequence
{x} in a premetric space (X, D, d} is an r-Cauchy sequence if
(x, x.)e D for m>n, and if for each e>0, there exists a positive
integer no such that m>n>__n0 implies d(x, x)< s. An r-convergent
sequence needs not be an r-Cauchy sequence. A premetric space
(X, D, d} is r-complete if every r-Cauchy sequence in it is r-convergent.

Dually the /-separatedness, the /-Cauchy sequences, and the
/-completeness are defined. In what follows, without Lemma 2, we
confine ourselves to the case where "r" is prefixed. However, every
result may be translated by the duality to the other case.

Let Xbe a set, and let D a subset of XX. For eachaeX,
we denote by D(a) the set of all x e X with (x, a) e D.

We conclude this section by the following lemma which may be
verified easily.

Lemma 1. If <X, D, d} is an r-complete premetric space, then
for each positive real number a and a e X, the subspace {x e D(a);
d(x, a) <_%_ a} is r-complete.

2. Let (X, D, d} be a premetric space, and let k e [0, 1). A
mapping f of X into itself is called a k-contraction if (x, y)e D
implies (f(x), f(y)) e D and d(f(x), f(y))<_ kd(x, y).

It is easy to see that, in an r-separated premetric space (X, D,
if x, y e X are fixed points of a k-contraction with k e [0, 1) and if
(x, y) e D, then x-y.

Now we can state the Banach contraction theorem for premetric
spaces:

Theorem 1. Let <X, D, d} be an r-separated premetrc space,
and f a k-contraction of X into itself with k e [0, 1). If there
exists a point a e X such that (f(a), a) e D, and if the subspace
M= {x e D(a); d(x, a) <_ (1- k)-d(f(a), a)} is r-complete, then there
exists a unique x e D(a) such that f(x)-x; moreover x e M and the
sequence {f(a)} is r-convergent to x.

Proof. Since (f(a), a) e D, each pair (f+(a), f(a)), n=l, 2,...,
does belong to D. Hence by induction, we can show that, for each
positive integer n, (f(a), a) e D and

d(f(a), a) <_ d(f(a), f-(a)) + d(f-(a), f-(a)) +... + d(f(a), a)
_<

and so we have, for every positive integer m,
d(f+(a), f(a)) <_ kd(f(a), a) <_ k(1 k)-d(f(a), a).
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This inequality shows that {f(a)} is an r-Cauchy sequence in the
subspace M. Consequently, it is r-convergent to a point x e M, that
is, for each e>0, there is a positive integer n0 such that n>_no
implies d(x, f(a))<e, and hence we have

d(f(x), f(a)) <_ kd(x, f-(a))< for every n no + 1.
Thus the sequence {f(a)} is also r-convergent to f(x). Since the
premetric space is r-separated, this implies f(x)=x. Now if y e D(a)
and f(y) y, then the inequality d(y, f(a)) <_ kd(y, a) shows that
{f(a)} is r-convergent to y, and so we have y=x by the same reason.
This completes the proof.

:. A subset B of a vector space E is said to be star-shaped
if 2BB for every 2e[0,1. For each subset B of E, we denote
by S(B) the union of all B with e [0, 1. If B is convex, then
S(B) coincides with the convex hull of the set {0} B. A subset
B of E is circled if 12 I_<1 implies 2B B.

Lemma 2. Let B be a non-empty bounded star-shaped convex
subset of a Hausdorff topological vector space E. Denote by D the
set of all (x, y) e EE such that x-y e 2B for some 0, and put,
for each (x, y) e D,

d(x, y)= inf { > 0; x-y e B}.
Then (E, D, d} is an r-separated and 1-separated premetric space.

Proof. The condition (P 1) is obviously satisfied. To verify
the condition (P 2), let (x, y), (y,z)eD. Then for some >0 and
p> 0, we have x- y e 2B and y- z e/B, which imply x- z e (2 +/)B.
This shows that (x, z) e D and d(x, z)<_ d(x, y)+ d(y, z). Thus (E, D, d}
is a premetric space. Now let {x} be a sequence in E which is
r-convergent (resp. /-convergent) to two points x, y e E at the same
time. For each neighborhood U of 0 in E, we can find a circled
neighborhood V of 0 in E such that V+ V U. Take an e >0 with
eB V. Then for sufficiently large n, both x-x and y-x (resp.
x- x and x-y) belong to B. Since V is circled, y +x (resp.
x- x) belongs to V, and hence we have x- y x-x+x.- y e V
+V U. Since E is Hausdorff, it follows that x=y. Therefore
(E, D, d} is r-separated and /-separated.

Lemma :. If B is a sequentially complete bounded subset of
a Hausdorff topological vector space E, then S(B) is sequentially
complete.

Proof. Denote by e(B) the set of all x e B such that x B
for every 2>1. We shall show first that, for each x eB, there
exists a 20>_-1 with 2oX e e(B). Let 20=sup {2; 2x e B}. Then 20:>1,
and we can find a sequence {2.} in {2; x e B} which converges to 20.
Since the sequence {x} converges to 0x, and since B is sequentially
complete, 0x belongs to B. In addition, 2 > 1 implies 20x B. Thus
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,oX e e(B). Now let {a} be a Cauchy sequence in S(B). Then for
each positive integer n, we can find a 2 e [0, 1 and an x e e(B)
such that a--.x,. The sequence {} contains a convergent sub-
sequence. Since {a} is a Cauchy sequence, it suffices to show that
a subsequence of {a} converges to an element of S(B), and so we
may assume without loss of generality that the sequence {.} converges
to a number e [0, 1. Let U be an arbitrary neighborhood of 0 in
E. Then there exists a circled neighborhood V of 0 in E such that
V+V U. Take a positive real number f with fB V. If =0,
then we can find a positive integer no for which we have 2/ for
every m>_.n; consequently we have a--,,x e U, which shows that
{a.} converges to 0 e S(B). Now consider the case where :/:0. We
can assume that 2 0 for every n. Let 0 min {, 2f/(2+ )}.
Then there exists a positive integer no such that
I- }</2 and ,x,-,x (,-e)V for every m, n>__no.

We have, for every m, n>no,

--i
2

and hence

On the other hand, since 0<-e<, we have

x- e Vc V for every m, n>no.
Therefore, if m, n>_no, then we have

x-=,--+ --1 e g+ gc U.

I follows hat {} is a Cauehy sequence in B, and so it converges
to an element aB. Since the sequence {2} eonverges to 2, the
sequence {a} converges to 2a. his completes he proof.

Now we have he following theorem.
Theorem 2. Let Xo be a bet of a Hado

veeto paee N, f mapi of Xo ito atifi the
that thee eit o-empt eqetialg eomplete bodeg
bet B of a [0, 1) eeh that

Xo ad - B(2O) imp f()-f() 2B.
If thee eit eemet a eh that + S(B) Xo ad f(a)

a+(1-)-B; moreove the eqeee {f(a)} eovee to

Proof. Let us denote by X the set of all we X0 sueh
f() X0 for every ositive integer . hen, the restriction of f



No. 1 Remark on Contraction Principle 25

to X is a mapping of Xinto X. We shall show that a+S(B) is
contained in X. To this end, take an arbitrary element x of a / S(B).
Then for some e [0, 1, the element x- a belongs to B, and so
we have f(x)-f(a)e ,kB for every positive integer n. On the
other hand, since f(a)-a oB, we have f(a)-f-(a) e ok-B for
every n>_2. Consequently we have, for every positive integer n,
(.) f(x)-a- f(x)- f(a)+ f(a)- f-l(a)/ / f(a)-a

B-B’,

where the set B’ is contained in S(B), because of the relation

< i- (l-1)k-< 1.

Thus we have "()e/S(B) Xo fo every positive nteer
which estab1shes that e/S(B)X. Therefore, t suee to pove
the theorem unde the hypothess that the mappn f

Now consider the set D of all (x, y) e E E such that x,-y ,S(B)
for some >0, and a function d on D defined by

d(x, y) inf {2 > 0; x- y e S(B)}.
Since the set S(B) is bounded star-shaped convex subset of E, by
virtu of Lemma 2, (E, D, d} is an r-separated premetric space, and
hence so is the subspace X0. It is clear that f is a k-contraction of
X0 into X0. Moreover the hypothesis of the theorem shows that
(f(a), a) belongs to the set D. Therefore if we prove that the set
M-{x e D(a); d(x, a)<_ (1-k)-d(f(a),a)} is r-complete, then it follows
from Theorem i immediately that f has a unique fixed point x0 in
D(a) to which the sequence {f’(a)} is r-convergent. Then, for each
neighborhood U of 0 in E, a positive real number exists with
,S(B) U; and hence we can find a positive integer no such that

Xo- f(a) e ,S(B) U for every n >__ no.
This shows that the sequence {f(a)} converges to x0 relative to the
original topology of E.

We shall proceed to prove that the set M is r-complete. Since
M is contained in the set a/S(B), it suffices, by Lemma 1, to show
that a+S(B) is r-complete. Let {x} be an r-Cauchy sequence in
a / S(B). Then, for each neighborhood U of 0 in E, there is a 2>0
with ,S(B) U. Hence we can find a positive integer no such that
m:>n>_n0 implies x-x ,S(B) U. Thus the sequence {x} is a
Cauchy sequence in the sequentially complete subset a/ S(B). Con-
sequently, {x} converges to an element x e a/S(B). On the other
hand, for each >0, there exists a positive integer no such that
m>_.n>_no implies x-xeeS(B). It follows that {x; m>__n} is a
Cauchy sequence in x +eS(B) for every n>_no, and so x does belong
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to x +eS(B) for every n>_.no. Therefore the sequence {x} is r-con-
vergent to x.

It remains only to prove that the fixed point x0 belongs to
a+a(1-k)-B. It is sufficient to consider the case where a:/:0. By
the relation (,), we have

f(a)-a e (k-+ k-2+ +I)B 1-k
1-k

for every positive integer n.

{ 1-k }convergesto(l_k)/,and{f(a)}con_Now the sequence
(1-k)a

verges to the fixed point x0. I-Ienee the sequence

in B converges to ((1-k)/oO(x0-a), and so we obtain the desired
eonelusion, sinee B is sequentially complete.
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