25. Cohomology Operations in Iterated Loop Spaces

By Goro Nishida
Department of Mathematics, Kyoto University, Kyoto
(Comm. by Zyoiti Suetuna, m. J. A., March 12, 1968)

1. Introduction. In [3], Dyer and Lashof have determined the $\bmod p$ homology structure of iterated loop spaces by use of extended p-th power operations, where p always denotes a prime. This operation is a generalization of H-squaring (for $p=2$) defined by Araki-Kudo [2], and operates on $\bmod p$ homology group of $H_{p}^{\infty}-$ spaces X, especially iterated loop spaces. Let $Q_{i}^{(p)}: H_{n}\left(X ; Z_{p}\right)$ $\rightarrow H_{n p+i}\left(X ; Z_{p}\right)$ be Dyer-Lashof's extended powers. For odd p, we denote operations $Q_{(p)}^{j}: H_{n}\left(X ; Z_{p}\right) \rightarrow H_{n+2 j(p-1)}\left(X ; Z_{p}\right), j=0,1, \cdots$, by $Q_{(p)}^{j} x=(-1)^{i+m\left(n^{2}+n\right) / 2}(m!)^{n} Q_{(2 j-n)(p-1)}^{(p)} x, x \in H_{n}\left(X ; Z_{p}\right), m=(p-1) / 2$, and for $p=2, Q_{(2)}^{j}: H_{n}\left(X ; Z_{p}\right) \rightarrow H_{n+j}\left(X ; Z_{p}\right)$ by $Q_{(2)}^{j} x=Q_{j-n}^{(2)} x$.

The operation $Q_{(p)}^{j}$ has the following properties: 1. $Q_{(p)}^{j}$ is a homomorphism; 2. For odd $p, Q_{(p)}^{j} x=0$ if deg $x>2 j$ and $Q_{(p)}^{j} x=x^{p}$ if $\operatorname{deg} x=2 j$, and for $p=2, Q_{(2)}^{j} x=0$ if $\operatorname{deg} x>j$ and $Q_{(2)}^{j} x=x^{2}$ if $\operatorname{deg} x=j$; 3. $Q_{(p)}^{j}(x \cdot y)=\sum_{k+l=j} Q_{(p)}^{k} x \cdot Q_{(p)}^{l} y ; ~ 4 . ~ Q_{(p)}^{j}$ commutes with the suspension homomorphism σ associated with the fibering of the contractible total space, $\sigma Q_{(p)}^{j}=Q_{(p)}^{j} \sigma$.

Our purpose is to determine the relation between $Q_{(p)}^{j}$ and the Steenrod reduced power operations ρ^{n} (squaring operations $S q^{n}$ for $p=2$). To state the results, we denote by ρ_{*}^{n} the dual operation of ρ^{n}, i.e., defined by

$$
\left\langle\rho_{*}^{n} x, y\right\rangle=\left\langle x, \rho^{n} y\right\rangle \text { for } x \in H_{*}\left(X ; Z_{p}\right), y \in H^{*}\left(X ; Z_{p}\right)
$$

Let $\binom{a}{b}$ be the binomial coefficient with the following convensions: $\quad\binom{a}{b}=0$ for a or $b<0$ and $\binom{a}{b}=1$ for $b=0, a \geq 0 . \quad \Delta$ denotes the homology Bockstein operation. Then we have

Main theorem. For odd p,

$$
\begin{gathered}
\rho_{*}^{n} Q_{(p)}^{n+s}=\sum_{i}(-1)^{n+i}\binom{s(p-1)}{n-p i} Q_{(p)}^{s+i} \rho_{*}^{i}, \\
\rho_{*}^{n} \Delta Q_{(p)}^{n+s}=\sum_{i}(-1)^{n+i}\binom{s(p-1)-1}{n-p i} \Delta Q_{(p)}^{s+i} \rho_{*}^{i} \\
+\sum_{i}(-1)^{n+i+1}\binom{s(p-1)-1}{n-p i-1} Q_{(p)}^{s+i} \rho_{*}^{i} \Delta,
\end{gathered}
$$

and for $p=2$

$$
S q_{*}^{n} Q_{(2)}^{n+s}=\sum_{i}\binom{s}{n-2 i} Q_{(2)}^{s+i} S q_{*}^{i} .
$$

Applying the results of [3], the reduced power operations in $Q(K)=\Omega^{\infty} S^{\infty} K$ and $\Omega^{k} S^{k+l}, e>0$, are computable by the theorem.

I wish to thank Professor H. Toda for many available suggestions.
2. Preliminaries. Let Σ_{p} denotes the symmetric group of p letters and π be the cyclic subgroup of order p generated by a cyclic permutation $T . J^{n} \sum_{p}$ denotes the n-th join of Σ_{p} with itself. Briefly, an H_{p}^{∞}-space is an associative H-space with a map Θ_{p}^{∞} : $J^{\infty} \Sigma_{p} \times X^{p} \rightarrow X$ such that (1) Σ_{p}-equivariant, (2) normalized, where $X^{p}=X \times \cdots \times X, p$-times (see [3]). Let W be the usual acyclic π-free complex with a single π-generator e_{i} for each dimension i. (W is realized geometrically by the "infinite dimensional sphere"). $J^{\infty} \pi$ is naturally included in $J^{\infty} \Sigma_{p}$ and $C_{*}\left(J^{\infty} \pi\right)$ is also an acyclic π-free chain complex. So, we can identify $J^{\infty} \pi$ with W, and if X is an H_{p}^{∞}-space then Θ_{p}^{∞} induces a homomorphism (see [3])

$$
\left(\Theta_{\pi}\right)_{*}: H_{*}\left(W \times_{\pi} X^{p} ; Z_{p}\right) \longrightarrow H_{*}\left(X ; Z_{p}\right) .
$$

Theorem 1. (Dyer-Lashof). Let x_{1}, x_{2}, \cdots be a Z_{p}-basis of homogeneous elements, finite for each dimenion, of $H_{*}\left(X ; Z_{p}\right)$. Then the homology classes represented by the following cycles form a Z_{p}-basis of $H_{*}\left(W \times{ }_{\pi} X^{p} ; Z_{p}\right)$;

$$
\begin{aligned}
& e_{i} \otimes_{\pi} x_{j}^{p}, j=1,2, \cdots, i \geq 0, x_{j}^{p}=x_{j} \otimes \cdots \otimes x_{j} \text { (} p \text {-times } \text {) } \\
& e_{0} \otimes_{\pi}\left(x_{j_{1}} \otimes \cdots \otimes x_{j_{p}}\right), j_{s} \neq j_{t} \text { for some s, } t
\end{aligned}
$$

where (j_{1}, \cdots, j_{p}) runs through each representative of the classes obtained by cyclic permutations of the indices.

Now, let X be an H_{p}^{∞}-space and $x \in H_{*}\left(X ; Z_{p}\right)$. Then the extended power operation $Q_{i}^{(p)}$ is defined by

$$
Q_{i}^{(p)}(x)=\left(\Theta_{\pi}\right)_{*}\left(e_{i} \otimes_{\pi} x^{p}\right)
$$

By this definition the proof of the main theorem can be reduced to the computation of ρ_{*}^{n}-operations in $H_{*}\left(W \times{ }_{\pi} X^{p} ; Z_{p}\right)$. Next, we sketch the definition of the Streenrod reduced powers (for details, see [4]). As is seen in [4] we may assume that X is a finite regular cell complex. Let $u \in H_{q}\left(X ; Z_{p}\right)$, and let $P(u)$ be the external reduced p power [4]. π operates on X trivially, and on $W \times X$ and on $W \times X^{p}$ by a diagonal action, then the diagonal map $d: W \times X$ $\rightarrow W \times X^{p}$ is π-equivariant and induces a map $d: W \times X \rightarrow W \times{ }_{\pi} X^{p}$. The projection: $W \times{ }_{\pi} X^{p} \rightarrow W / \pi$ makes $H^{*}\left(W \times{ }_{\pi} X^{p} ; Z_{p}\right)$ an $H^{*}(W / \pi$; $\left.Z_{p}\right)$-module. Similarly, $H^{*}\left(W \times{ }_{\pi} X ; Z_{p}\right)=H^{*}\left(W / \pi \times X ; Z_{p}\right)$ is also an $H^{*}\left(W / \pi ; Z_{p}\right)$-module, and d^{*} is an $H^{*}\left(W / \pi ; Z_{p}\right)$-homomorphism. Let w_{i} be the generator of $H^{i}\left(W / \pi ; Z_{p}\right)$, dual to the homology class represented by e_{i}. β denotes the cohomology Bockstein operation. Then writing $\nu(q)=(m!)^{-q}(-1)^{m\left(q^{2}+q\right) / 2}$, we can define the Steenrod reduced powers for $u \in H^{q}\left(X ; Z_{p}\right)$ by, for $p>2$,

$$
\nu(q) d^{*} P(u)=\sum_{i}(-1)^{i} w_{(q-2 i)(p-1)} \times \rho^{i} u+\sum_{i}(-1)^{i} w_{(q-2 i)(p-1)-1} \times \beta \rho^{i} u
$$

and for $p=2, \quad d^{*} P(u)=\sum_{i} w_{q-i} \times S q^{i} u$.
Theorem 2. Let u_{1}, u_{2}, \cdots be a Z_{p}-basis of $H^{*}\left(X ; Z_{p}\right)$ dual to x_{1}, x_{2}, \cdots of theorem 1 . Then we can choose elements z_{1}, z_{2}, \cdots in $H^{*}\left(W \times{ }_{\pi} X^{p} ; Z_{p}\right)$, which are a Z_{p}-basis of ker d^{*}, such that $w_{i} \times P u_{j}$, $i \geq 0, j \geq 1$, and $z_{k}, k \geq 1$ form a Z_{p}-basis of $H^{*}\left(W \times{ }_{\pi} X^{p} ; Z_{p}\right)$ and $w_{i} \times P u_{j}$ is dual to $e_{i} \otimes_{\pi} x_{j}^{p}$ for all i, j.

Proof of Theorem 1, 2. It is known [3], [4] that there are isomorphisms $H_{*}\left(W \times{ }_{\pi} X^{p} ; Z_{p}\right) \cong H_{*}\left(W \otimes_{\pi} H_{*}\left(X^{p} ; Z_{p}\right)\right), H^{*}\left(W \times{ }_{\pi} X^{p} ; Z_{p}\right)$ $\cong H^{*}\left(\operatorname{Hom}_{\pi}\left(W \otimes H_{*}\left(X^{p} ; Z_{p}\right), Z_{p}\right)\right) . \quad$ The basis x_{1}, x_{2}, \cdots gives a direct sum splitting of $H_{*}\left(X ; Z_{p}\right)$, i.e.,

$$
H_{*}\left(X ; Z_{p}\right)=\sum_{j} A_{j}, A_{j} \cong Z_{p}\left\{x_{j}\right\} \text { and } H^{*}\left(X ; Z_{p}\right)=\sum_{j} A_{j}^{*}, A_{j}^{*} \cong Z_{p}\left\{u_{j}\right\}
$$

So, we have the following decomposition as π-modules

$$
H_{*}\left(X^{p} ; Z_{p}\right)=\sum_{j} A_{j}^{p}+\sum A_{j_{1}} \otimes \cdots \otimes A_{j_{p}}
$$

where $A_{j}^{p}=A_{j} \otimes \cdots \otimes A_{j}$ and the second summation runs over j_{1}, \cdots, j_{p} with $j_{s} \neq j_{t}$ for some s, t. It is easily checked that π operates trivially on the first term and freely on the second term, and there is a Z_{p}-module B such that the second term is isomorphic to $Z_{p}(\pi) \otimes B$, where $Z_{p}(\pi)$ denotes the groupring of π over Z_{p}. Therefore we have

$$
\begin{aligned}
& H_{*}\left(W \times_{\pi} X^{p} ; Z_{p}\right) \cong \sum_{j} H_{*}\left(W \otimes_{\pi} A_{j}^{p}\right)+H_{*}\left(W \otimes_{\pi} Z_{p}(\pi) \otimes B\right), \\
& H^{*}\left(W \times_{\pi} X^{p} ; Z_{p}\right) \cong \sum_{j} H^{*}\left(W \otimes_{\pi} A_{j}^{p}\right)+H^{*}\left(W \otimes_{\pi} Z_{p}(\pi) \otimes B\right)
\end{aligned}
$$

$H_{i}\left(W \otimes_{\pi} A_{j}^{p}\right)$ is generated by $e_{i} \otimes_{\pi} x_{j}^{p}$. Since $H_{*}\left(W \otimes_{\pi} Z_{p}(\pi)\right) \cong Z_{p}, H_{*}(W$ $\left.\otimes_{\pi} Z_{p}(\pi) \otimes B\right) \cong B$. This proves Theorem 1. Next consider the cohomology group. It is proved in Chapter VIII of [4] that $H^{i}\left(W \otimes_{\pi} A_{j}^{p}\right)$ $\cong H^{i}\left(W / \pi ; Z_{p}\right) \otimes\left(A_{j}^{*}\right)^{p}$ is generated by $w_{i} \times P u_{j}$ and that $H^{*}\left(W \otimes_{\pi} Z_{p}(\pi)\right.$ $\otimes B) \subset \operatorname{ker} d^{*}$. Now we shall prove that $H^{*}\left(W \otimes_{\pi} Z_{p}(\pi) \otimes B\right)=\operatorname{ker} d^{*}$. Let $z=\sum_{k} a_{k} w_{i_{k}} \times P u_{j_{k}}, a_{k} Z_{p}$, be a homogeneous element such that $d^{*} z=0$. That is, for odd $p, 0=\sum_{k} a_{k} w_{i_{k}}\left(\sum_{l}(-1)^{l} w_{\left(q_{k}-2 l\right)\langle p-1)} \rho^{l} u_{j_{k}}\right.$ $\left.+\sum_{l}(-1)^{l} w_{\left(q_{k}-2 l\right)(p-1)-1} \beta \rho^{l} u_{j_{k}}\right)$ where $q_{k}=\operatorname{deg} u_{j_{k}}$. Consider an element $u_{j_{k}}$ of the lowest degree, then the right side of the above equality has a leading term $a_{k} w_{i_{k}+(p-1) q_{k}} \times u_{j_{k}}$. Thus $a_{k}=0$ for this k, and so on. The case $p=2$ is similar. This shows the above assertion, and Theorem 2 is proved.
3. Computations. Hereafter p denotes an odd prime unless otherwise stated, and $m=(p-1) / 2$,

Lemma (Streenrod). Let u be a q-dimensional cohomology class. Then for any positive integer k, l, q, the following relations hold:

$$
\begin{aligned}
& \sum_{i}(-1)^{i+k}\binom{(q-2 i) m}{m q-l+i} \rho^{k-m q+l-i} \rho^{i} u \\
= & \sum_{i}(-1)^{i+l+m q}\binom{(q-2 i)^{m}}{m q-k+i} \rho^{l-m q+k-i} \rho^{i} u
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i}(-1)^{i+k+m q+1}\binom{(q-2 i) m-1}{m q-l+i} \rho^{k-m q+l-i} \beta \rho^{i} u \\
= & \sum_{i}(-1)^{i+l+1}\binom{(q-2 i) m}{m q-k+i} \beta \rho^{k-m q+l-i} \rho^{i} u \\
+ & \sum_{i}(-1)^{i+l}\binom{(q-2 i) m-1}{m q-k+i} \rho^{k-m q+l-i} \beta \rho^{i} u .
\end{aligned}
$$

The proof was given in Chapter VIII of [4].
Theorem 3. $\rho^{n} P u=\sum_{i}\binom{(q-2 i) m}{n-p i} w_{2(n-p i)(p-1)} P\left(\rho^{i} u\right)$

$$
-\mu(q) \sum_{i}\binom{(q-2 i) m-1}{n-p i-1} w_{2(n-p i)(p-1)-p} P\left(\beta \rho^{i} u\right)+z,
$$

where $u \in H^{q}\left(X ; Z_{p}\right), z \in \operatorname{ker} d^{*}$, and $\mu(q)$ denotes $(m!)^{-1}(-1)^{m q}$.
If $z \in \operatorname{ker} d^{*}$ then $w_{r} \times z \in \operatorname{ker} d^{*}$ for any $r \geq 0$ since d^{*} is an $H^{*}\left(W / \pi ; Z_{p}\right)$-map. Therefore an easy computation shows

Corollary. $\quad \rho^{n}\left(w_{s} \times P u\right)=\sum_{i}\binom{[s / 2]+(q-2 i) m}{n-p i} w_{s+2(n-p i)(p-1)}$

$$
\begin{aligned}
& \times P\left(\rho^{i} u\right)-\mu(q) \varepsilon(s) \sum_{i}\binom{[s / 2]+(q-2 i) m-1}{n-p i-1} w_{s-p+2(n-p i)(p-1)} \\
& \times P\left(\beta \rho^{i} u\right)+z^{\prime},
\end{aligned}
$$

where $u \in H^{q}\left(X ; Z_{p}\right), z^{\prime} \in \operatorname{ker} d^{*}, \varepsilon(s)=1$ if s is even and $\varepsilon(s)=0$ if s is odd, and for a real $x[x]$ denotes the Gaussian symbol.

Proof of Theorem 3. Recall that $\beta w_{1}=w_{2}, w_{2 n}=\left(w_{2}\right)^{n}$, and $\rho^{j} w_{n}=\binom{[n / 2]}{j} w_{n+2 j(p-1)}$. By the definition of the reduced power and by the Cartan formula

$$
\begin{aligned}
\rho^{n}\left(\nu(q) d^{*} P u\right) & =\sum_{i, j}(-1)^{i}\binom{(q-2 i) m}{j} w_{(q-2 i+2 j)(p-1)} \times \rho^{n-j} \rho^{i} u \\
& +\sum_{i, j}(-1)^{i}\binom{(q-2 i) m-1}{j} w_{(q-2 i+2 j)(p-1)-1} \times \rho^{n-j} \beta \rho^{i} u .
\end{aligned}
$$

Let $l=m q+i-j$ and $s=n-m q+l-i$, then by the lemma we have

$$
\begin{aligned}
& \rho^{n}\left(\nu(q) d^{*} P u\right)=\sum_{l}(-1)^{n} w_{(p q-2 l)(p-1)} \sum_{i}(-1)^{i+n}\binom{(q-2 i) m}{m q+i-l} \rho^{n-m q+l-i} \rho^{i} u \\
& \quad+\sum_{l}(-1)^{n+m p+1} w_{(p q-2 l)(p-1)-1} \sum_{i}(-1)^{i+n+m q+1}\binom{(q-2 i) m-1}{m q+i-l} \rho^{n-m q+l-i} \beta \rho^{i} u \\
& \quad=\sum_{l}(-1)^{n} w_{(p q-2 l)(p-1)} \sum_{i}(-1)^{s-n}\binom{(q-2 i) m}{m q-n+i} \rho^{s} \rho^{i} u \\
& +\sum_{l}(-1)^{n+m q+1} w_{(p q-2 l)(p-1)-1} \sum_{i}(-1)^{i+l+1}\binom{q-2 i) m}{m q-n+i} \beta \rho^{s} \rho^{i} u \\
& \quad+\sum_{l}(-1)^{n+m q+1} w_{(p q-2 l)(p-1)-1} \sum_{i}(-1)^{i+l}\binom{(q-2 i) m-1}{m q-n+i} \rho^{s} \beta \rho^{i} u
\end{aligned}
$$

Since $\binom{a}{b}=\binom{a}{a-b}$,

$$
\begin{aligned}
& =\sum_{i} w_{2(n-p i)(p-1)} \sum_{s}(-1)^{s}\binom{(q-2 i) m}{n-p i} w_{(q+2 i(p-1)-2 s)(p-1)} \rho^{s} \rho^{i} u \\
& +\sum_{i} w_{2(n-p i)(p-1)} \sum_{s}(-1)^{s}\binom{(q-2 i) m}{n-p i} w_{(q+2 i(p-1)-2 s)(p-1)-1} \beta \rho^{s} \rho^{i} u \\
& -\sum_{i} w_{2(n-p i)(p-1)-p} \sum_{s}(-1)^{s}\binom{(q-2 i) m-1}{n-p i-1} w_{(q+2 i(p-1)+1-2 s)(p-1)} \rho^{s} \beta \rho^{i} u .
\end{aligned}
$$

If a and b are odd, $w_{a} \times w_{b}=0$, thus

$$
\begin{aligned}
& \rho^{n}\left(\nu(q) d^{*} P u\right)=\sum_{i} w_{2(n-p i)(p-1)}\binom{(q-2 i) m}{n-p i} \nu(q+2 i(p-1)) d^{*} P\left(\rho^{i} u\right) \\
& -\sum_{i} w_{2(n-p i)(p-1)-p}\binom{(q-2 i) m-1}{n-p i-1} \nu(q+2 i(p-1)+1) d^{*} P\left(\beta \rho^{i} u\right) .
\end{aligned}
$$

Since $\nu(q)^{4} \equiv 1(\bmod p)$, we have $\nu(q+2 i(p-1)) / \nu(q) \equiv 1(\bmod p)$ and $\nu(p+2 i(p-1)+1) / \nu(q) \equiv(m!)^{-1}(-1)^{m q}(=\mu(q))(\bmod p)$. This completes the proof.

Proof of the main theorem. Let x_{1}, x_{2}, \cdots be a canonical basis of $H_{*}\left(X ; Z_{p}\right)$, i.e., homogeneous and if $\Delta x_{j} \neq 0$ then Δx_{j} is also a basic element. Denote by u_{1}, u_{2}, \cdots the dual cohomology basis. We represent ρ_{*}^{n} in matrix forms with respect to this basis, i.e., $\rho_{*}^{n} x_{i}=\sum_{j} a_{i, j}(n) x_{j}, a_{i, j}(n) \in Z_{p}$, and by the duality $\rho^{n} u_{j}=\sum_{k} a_{k, j}(n) u_{k}$. Since $d^{*} P$ is a homomorphism, we have $P\left(\rho^{n} u_{j}\right)-\sum_{k} a_{k, j}(n) P u_{k} \in \operatorname{ker} d^{*}$ and $P\left(\beta \rho^{n} u_{j}\right)-\sum_{k} a_{k, j}(n) P\left(\beta u_{k}\right) \in \operatorname{ker} d^{*}$. Therefore by Theorem 3,

$$
\begin{aligned}
& \rho^{n}\left(w_{s} \times P u_{j}\right)=\sum_{i}\binom{[s / 2]+(q-2 i) m}{n-p i} w_{s+2(n-p i)(p-1)} \sum_{k} a_{k, j}(i) P u_{k} \\
& -\mu(q) \varepsilon(s) \sum_{i}\binom{[s / 2]+(q-2 i) m-1}{n-p i-1} w_{s-p+2(n-p i)(p-1)} \sum_{k} a_{k, j}(i) P\left(\beta u_{k}\right)+z^{\prime} .
\end{aligned}
$$

Consider the coefficient of $w_{t} \times P u_{k}$ in $\rho^{n}\left(w_{s} \times P u_{j}\right)$.
Case 1. $u_{k} \notin \operatorname{Im} \beta$, then the coefficient is

$$
\binom{[s / 2]+\left(q_{j}-2 i\right) m}{n-p i} a_{k, j}(i), \quad \text { where } \quad q_{j}=\operatorname{deg} u_{j} .
$$

By the duality (Theorem 2), writing $c=t-2 n(p-1)$,

$$
\rho_{*}^{n}\left(e_{c+2 n(p-1)} \otimes_{\pi} x_{k}^{p}\right)=\sum_{i, j}\binom{[s / 2]+\left(q_{j}-2 i\right) m}{n-p i} a_{k, j}(i)\left(e_{s} \otimes_{\pi} x_{j}^{p}\right) .
$$

By the equality of the degrees, $q_{k}-q_{j}=2 i(p-1)$ and $\mathrm{s}=c+2 p i(p-1)$, $[s / 2]+\left(q_{j}-2 i\right) m=[s / 2]+\left(q_{k}-2 i p\right) m=[c / 2]+m q_{k}$. Therefore we have

$$
\rho_{*}^{n}\left(e_{c+2 n(p-)} \otimes_{\pi} x_{k}^{p}\right)=\sum_{i, j}\binom{[c / 2]+q_{k} m}{n-p i} \alpha_{k, j}(i)\left(e_{c+2 i(p-1)} \otimes_{\pi} x_{j}^{p}\right) .
$$

Acting $\left(\Theta_{\pi}\right)_{*}$ on the both sides and using that $Q_{i}^{(p)}$ is a homomorphism, we have

$$
\begin{equation*}
\rho_{*}^{n} Q_{c+2 n(p-1)}^{(p)}\left(x_{k}\right)=\sum_{i}\binom{[c / 2]+q_{k} m}{n-p i} Q_{c+2 i p(p-1)}^{(p)} \rho_{*}^{i} x_{k} . \tag{1}
\end{equation*}
$$

Case 2. $u_{k}=\beta u_{l}$, then the coefficient is

$$
\binom{[s / 2]+\left(q_{j}-2 i\right) m}{n-p i} a_{k, j}(i)-\mu\left(q_{j}\right) \varepsilon\left(s^{\prime}\right)\binom{\left[s^{\prime} / 2\right]+\left(q_{j}-2 i\right) m-1}{n-p i-1} a_{l, j}(i) .
$$

Similarly to Case 1,

$$
\begin{aligned}
\rho_{*}^{n}\left(e_{n+2 n(p-1)} \otimes_{\pi} x_{k}^{p}\right) & =\sum_{i j}\binom{[s / 2]+\left(q_{j}-2 i\right) m}{n-p i} a_{k, j}(i)\left(e_{s} \otimes_{\pi} x_{j}^{p}\right) \\
& -\sum_{i j}\left(q_{j}\right) \varepsilon\left(s^{\prime}\right)\binom{\left[s^{\prime} / 2\right]+\left(q_{j}-2 i\right) m-1}{n-p i-1} a_{l, j}(i)\left(e_{s^{\prime}} \otimes_{\pi} x_{j}^{i}\right) .
\end{aligned}
$$

The first summation can be computed as above. Consider the second one, where $p q_{k}+c=p q_{j}+s^{\prime}, q_{k}-q_{j}=2 i(p-1)+1 . \quad$ So, $\quad s^{\prime}=c+p$ $+2 p i(p-1),\left[s^{\prime} / 2\right]+\left(q_{j}-2 i\right) m-1=[(c+1) / 2]+\left(q_{k} m-1\right)$ and $\nu\left(q_{j}\right)$ $\equiv \nu\left(q_{k+1}\right)(\bmod p) . \quad \varepsilon\left(s^{\prime}\right)=\varepsilon(c+1)$ since s^{\prime} and c have an opposite parity. Therefore

$$
\begin{aligned}
& \rho_{*}^{n}\left(e_{c+2 n(p-1)} \otimes_{\pi} x_{k}^{p}\right)=\sum_{i, j}\binom{[c / 2]+q_{k} m}{n-p i} a_{k, j}(i)\left(e_{c+2 i p(p-1)} \otimes_{\pi} x_{j}^{p}\right) \\
& \quad-\mu\left(q_{k}+1\right) \varepsilon(c+1) \sum_{i, j}\binom{[(c+1) / 2]+q_{k} m-1}{n-p i-1} a_{l, j}(i)\left(e_{c+p+2 i p(p-1)} \otimes_{\pi} x_{j}^{p}\right) .
\end{aligned}
$$

Remark that $x_{l}=\Delta x_{k}$. Then we have

$$
\begin{align*}
& \rho_{*}^{n} Q_{o+2 n(p-1)}^{(p)} x_{k}=\sum_{i}\binom{[c / 2]+q_{k} m}{n-p i} Q_{c+2 i p(p-1)}^{(p)} \rho_{*}^{i}\left(x_{k}\right) \tag{2}\\
& \quad-\mu\left(q_{k}+1\right) \varepsilon(c+1) \sum_{i}\binom{[(c+1) / 2]+m q_{k}-1}{n-p i-1} Q_{c+p+2 p(p-1)}^{(p)} \rho_{*}^{i} \Delta\left(x_{k}\right)
\end{align*}
$$

If $u_{k} \notin \operatorname{Im} \beta$, then $\Delta x_{k}=0$. Therefore the formula (1) and (2) coincide, and we have in general

$$
\begin{aligned}
& \rho_{*}^{n} Q_{c+2 n(p-1)}^{(p)} x=\sum_{i}\binom{[c / 2]+q m}{n-p i} Q_{c+22 p(p-1)}^{(p)} \rho_{*}^{i} x \\
& \quad-\mu(q+1) \varepsilon(c+1) \sum_{i}\binom{[(c+1) / 2]+q m-1}{n-p i-1} Q_{c+p+2 i p(p-1)}^{(p)} \rho_{*}^{i} \Delta x .
\end{aligned}
$$

where $x \in H_{q}\left(X ; Z_{p}\right)$. Then the main theorem is an easy restatement of the above formula. For the case $p=2$, the proof is similar and ommited.

References

[1] J. Adem: The Relations on Steenrod Powers of Cohomology Classes. Algebraic Geometry and Topology. Princeton (1957).
[2] S. Araki and T. Kudo: Topology of H_{n}-space and H-squaring operations. Memoirs Fuc. Sci., Kyushu Univ., 10, 85-120 (1965).
[3] E. Dyer and R. K. Lashof: Homology of iterated loop spaces. Amer. J. Math., 84, 35-88 (1962).
[4] N. E. Steenrod: Cohomology Operations. Annals Math. Studies, Princeton (1962).

