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O Some Mixed Problems or Fourth Order
Hyperbolic Equations

By Sadao ]VIYATAKE
Department of Mathematics Kyoto, University

(Comm. by Kinjir6 KUNU(I, M..)., April 12, 1968)

1. Introduction. We consider some mixed problems for fourth
order hyperbolic equations. Let S be a smooth and compact hyper-
surface in R and 9 be the interior or exterior of S. Let

(E) Lu= -tT+(al+a+ +aal u+ B x, t,

Here a(k= 1, 2, 3) are the following operators:

a----.oX a,(x) ox +b(x,D),

(1.1) a,(x)=a,(x) are real,

E a,,(x)2i$ , (>0)

for every (x, ) e 9 R (k= 1, 2, 3),
B denotes an arbitrary third order differential operator and b are
first order operators. Let us assume that all coefficients are suffi-
ciently differentiable and bounded in D or in D (0, ).

Recently S. Mizohata [1] treated mixed problems for the equa-
tions of the form

i=1

(i=1,..., m).
The above equation has theLet us consider the case where m-2.

form

Ot--; + (c(x) + c(x))a + cca + (operator of third order).

Now it is not difficult to see that this operator can be considered as a

special class of (E), by putting a-cca, a=(1-c)ca+ (1--)c.a,
a being a constant less than 1 chosen closely to 1. We consider the
case where the operators a have some relations only at the boundary.
Let us denote the Sobolev space H(/2) simply by H, and its norm by
I1" ]] and denote the closure of .@(9) in H by _q). Define

D(a) {u e H gl .@. au e .}.
Namely, u e H belongs to D(a) means that not only u itself but also
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au vanish at the boundary. We assume that
(H) D(a.) =D(a)=D(a) (= D(a)).
Our boundary conditions are followings"
(Case I) ul=O,

(Case II)
On O-n + a(s) au I 0,

where 3n ..a,(x) cos (r, x) ( outer normal),

and a(s) is a smooth complex-valued function defined on S.
Consider the case where B_=0. Put

u u u (a a.) -u.(1.2) uo u u -- u +au u +t
Then the equation (E) with B--0 is reduced to

d U(t)=A U(t) + F(t),(i.3) d---
where U(t)=t(Uo(t), u(t), u(t), u(t)), F(t)--t(O, O, O, f(t)), and

0 1 0 0

(1.4) A --a 0 1 0
0 -a 0 1
0 0 -a 0

Conversely if U(t) satisfies (1.2), then Uo(X, t) satisfies (E) with B--0.
Let us denote

3 +a)ul=0N- tu e H (..n
We introduce two Hilbert spaces according to Case I and Case

II.

(1,5) ,fl( D(a) H g). . L
(.--H N N H L..

These spaces are closed subspaces of H H H L: equipped with
the canonical norm
(.6) IIuIl.-IlUol+llul+llu.l,+llull.
According to Cases I and II, we take the definition domains of A as
follows

(1.7) D(A) H VI D(a) D(a) H .q)k -q)k
D(A). N(a) H V) N N H, where

(1.8) N(a)={u u eHN, au e N}.
For convenience we note for U e D(A) (i=1, 2)
(1.9) II U ()= II u0 II+ Ilu + II u. + Ilul .
D(A) and D(A) are dense in ( and J( respectively. In fact, in
view of the regularity theorem on elliptic boundary problems, we
can show easily that D(a) is dense in _q) )H, and that N(a) is dense
in NH.
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Now we state our result.
I)Theorem. For any f(t) in (L ) and any initial data (u(x, 0),

u(x 0), O) 0)) in D(A), there exists a unique solu--- -u(x i
u(x

tion o the equation (E), satisfying the boundary condition (I) or (II).
(D(A)). Moreover when we assumeThe solution U(t) is in (.()

the compatibility condition on the initial data and the regularity of
f(t), then the solution has the same regularity as the initial data.

2. Some lemmas. Let (x) be the distance from x to the
surface measured along a straight line issuing from S with the

0_( 0 .)+(first order oper-conormal direction. For a=
3x

a(x)
3x

ator) put

(2.1) a(x)-- a(x) (x) 3(x)
x x

Lemma 1. (Decomposition of second order elliptic operators).
Assume that a satisfies (1.1), then a is written in tO in the/ollowing

O?’m
(2.2) a=n*(x, D)n(x, D)-- E t(x, D)s(x, D)+ (first order term).

j: finite

Here t# and s are first order operators and tangential on S. The
operator n has the following form"

):(x)(2.s) n(x, D)- a(x) x
where (x) is a C-function taking the value 1 in a small neighbor-
hood of S, and vanishing outside of some neighborhood of S.

Remark. We say that a first differential operator is tangential
at the boundary S,

-+d(x)t(x, D)- E c(x) x
satisfies c(x)cos (,, x)-0, for all x e S. Then we have the follow-
ing relation"

(t(x, D)u(x), v(x))=(u(x), t*(x, D)v(x)) for all u, v e H.
o -( o" (= (i-, , z S.

) I H vaihe t the bogar, the (-) wihe
o t the

Seteh o the proof. After a local transformation, let

(2.4) a=b(x, y, D,) + c(x, y, D) (i- 1, 2),

1) f(t) e 8(H) (p--0,1,2 means that f(t) is p times continuously differenti-
able in t with values in H.
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!
where blx, y, Dx, -ff.u ) are first order operators and c(x, y, Dx) do

not contain O__. Then, a (i-1, 2) satisfy (H) if and only if the fol-
3y

lowing relation holds

Lemma 3. Assume that a and a satisfy (1.1), then there exists
a positive constant such that for sufficiently large constan$ r,

Re(au, a.u)+rllull>_llull for all u eH
or/or u e N.

Lemma 4. Assume that a, a, and a satisfy (1.1) and (H), then
we have

Re a.(x)
0

au, 0 au

for all u e D(a) or u e H N.
Lemma . Under the same assumption as in Lemma 4, there

exists a positive constant C such that
(au, av)-- (au, av) C u [ [ v

for all u e H N, v e N, or for u e D(a) and v e H .
Lemma 5. Under the same assumption as in Lemma 5, we have

(au, aaUo) (au, aaUo) Cu l Uo
for all Uo e N(a) and u eHN.

3, volution equation and existence of solutions, We intro-
duce the following hermitian form in defined by

+ (a,(x) )-au, x
+ {(a:u, av) + (au, av) + r(u, v)}

+
In Case II we use the hermitian form of the following type"

(U, g),= [0, v0] +{(,)+(, v)+r(, )}
a .+)u,, ( a + +r(u,v)}

+(, ).
It would be natural to take the following hermitian form for

where and t are first order tangential oeraors derived from he
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decomposition of Lemma 1 with respect to the operator a.
However or this form the calculus by integration by parts con-

cerning (A U, U)/ (U, AU) does not work well. Taking account
o the act that (a-a)(n./p)Uo and (n/p)aUo vanish at the
boundary for Uo N(a) (in view of Lemma 2),
we introduce the ,following hermitian form"
(3.3) [u0, v0] ((n + p)aUo, ,(x, D)vo) + (r(x, D)uo, (n+ p)aVo)

/ F, {(.au0, saVo)/(saUo, t.aVo)}/ r(Uo, Vo),

where
(3.4) ,(x, D)- (a- fla)(n / p) / fl(m. / p)a.
Here a(x) (i-1, 2,..., n) and p(x) appearing in (3.2), (3.3)are arbi-
trary sufficiently smooth functions satisfying on S the following
conditions"

F, a,a,(x) cos (, x)-a(s) on S

(3.5) (F, a, cos (, x) cos (, x))1/2(F, a, cos (, x) cos (, x))-a(s)

p(s) on S.
By virtue of Lemma 3 and Lemma 4, there exists a positive constant
C such that

(3.6) -1 II UII_(U, U)5(_CII UII (i-1,2) or U e tr.

Considering Lemmas 5 and 6 we obtain the following estimates
for another constant C
(3.7) I(AU, U)jg+(U, AU)5(I_CII U]I for all U e D(A) (i--1, 2).

Proposition 1. For any U D(A), there exists a positive number
such that

(3.8) [I(,I-A)UI d>_([ [--/)]] V [Id for [[>fl, real.
Let us show that there exists U e D(A) such that (,I-A)U=F holds
for any F in (. For this purpose it suffices to prove that there
exists u e H’ D(a) or u e N(a) such that
(3.9) (,+ (a+ a. + a), + aa)u= g
holds for any g in L and 121)ft. This is reduced to the theory of
the elliptic boundary value problems containing a real parameter (c.f.
S. Mizohata [1]).

Thus we are in a position to apply Hille-Yosida’s theorem.
Proposition 2. When we assume F(t)e t(D(A)) and the initial

data U(0) e D(A), then we have a unique solution in ’t((,) t(D(A),)
of the equation (1.3) represented by

(3.10) U(t)- TtU(O) + Tt_F(s)ds,

where Tt is the semi-group with the infinitesimal generator A.
Moreover we have the following energy inequality"
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Proposition 3 Assume that f(t) is in (L), then we have

+ ]lf’(t)l odt
or the solutions U($) e d(D(A)) d(J() of the equation (1.3).

By Propositions 2 and 3, we can use the method of successive
approximation to the equation (E). Ths we arrive at the Theorem
stated in 1.
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