60. On Some Mixed Problems for Fourth Order Hyperbolic Equations

By Sadao Miyatake
Department of Mathematics Kyoto, University
(Comm. by Kinjirô KunugI, m. J. A., April 12, 1968)

§1. Introduction. We consider some mixed problems for fourth order hyperbolic equations. Let S be a smooth and compact hypersurface in R^{n} and Ω be the interior or exterior of S. Let
(E) $L u=\left(\frac{\partial^{4}}{\partial t^{4}}+\left(a_{1}+a_{2}+a_{3}\right) \frac{\partial^{2}}{\partial t^{2}}+a_{3} a_{1}\right) u+B\left(x, t, \frac{\partial}{\partial t}, D\right) u=f$.

Here $a_{k}(k=1,2,3)$ are the following operators:

$$
\begin{align*}
& a_{k}=-\sum_{i j}^{n} \frac{\partial}{\partial x_{i}}\left(a_{k, i j}(x) \frac{\partial}{\partial x_{j}}\right)+b_{k}(x, D), \\
& a_{k, i j}(x)=a_{k, j i}(x) \text { are real, } \tag{1.1}\\
& \sum_{i j}^{n} a_{k, i j}(x) \xi_{i} \xi_{j} \geq \delta|\xi|^{2}, \quad(\delta>0)
\end{align*}
$$

for every $(x, \xi) \in \Omega \times R^{n}(k=1,2,3)$, B denotes an arbitrary third order differential operator and b_{k} are first order operators. Let us assume that all coefficients are sufficiently differentiable and bounded in $\bar{\Omega}$ or in $\bar{\Omega} \times(0, \infty)$.

Recently S. Mizohata [1] treated mixed problems for the equations of the form

$$
\begin{aligned}
L=\prod_{i=1}^{m}\left(\frac{\partial^{2}}{\partial t^{2}}+c_{i}(x) a(x, D)\right)+B_{2 m-1}, \quad c_{i}(x)>c_{i+1}(x), & c_{i}(x)>0 \\
& (i=1, \cdots, m)
\end{aligned}
$$

Let us consider the case where $m=2$. The above equation has the form

$$
\frac{\partial^{4}}{\partial t^{4}}+\left(c_{1}(x)+c_{2}(x)\right) a \frac{\partial^{2}}{\partial t^{2}}+c_{1} c_{2} a^{2}+\text { (operator of third order) }
$$

Now it is not difficult to see that this operator can be considered as a special class of (E), by putting $a_{1}=\alpha c_{1} a, a_{2}=(1-\alpha) c_{1} a+\left(1-\frac{1}{a}\right) c_{2} a$, α being a constant less than 1 chosen closely to 1 . We consider the case where the operators a_{k} have some relations only at the boundary. Let us denote the Sobolev space $H^{p}(\Omega)$ simply by H^{p}, and its norm by $\|\cdot\|_{p}$ and denote the closure of $\mathscr{D}(\Omega)$ in H^{1} by $\mathscr{D}_{L^{2}}^{1}$. Define

$$
D\left(a_{k}\right)=\left\{u \in H^{3} \cap \mathscr{D}_{L^{2}}^{1} ; a_{k} u \in \mathscr{D}_{L^{2}}^{1}\right\} .
$$

Namely, $u \in H^{3}$ belongs to $D\left(a_{k}\right)$ means that not only u itself but also
$a_{k} u$ vanish at the boundary. We assume that
(H) $D\left(a_{1}\right)=D\left(a_{2}\right)=D\left(a_{3}\right) \quad(=D(\alpha))$.

Our boundary conditions are followings:
(Case I) $\left.\quad u\right|_{s}=0,\left.\quad a_{1} u\right|_{s}=0$
(Case II) $\left.\quad\left(\frac{\partial}{\partial n_{1}}+\sigma(s)\right) u\right|_{s}=0,\left.\quad\left(\frac{\partial}{\partial n_{1}}+\sigma(s)\right) a_{1} u\right|_{s}=0$,
where

$$
\frac{\partial}{\partial n_{1}}=\sum_{i j} a_{1, i j}(x) \cos \left(\nu, x_{j}\right) \frac{\partial}{\partial x_{i}}, \quad(\nu ; \text { outer normal }),
$$ and $\sigma(s)$ is a smooth complex-valued function defined on S.

Consider the case where $B \equiv 0$. Put

$$
\begin{equation*}
u_{0}=u, \quad u_{1}=\frac{\partial}{\partial t} u, \quad u_{2}=\frac{\partial^{2} u}{\partial t^{2}}+a_{1} u, \quad u_{3}=\frac{\partial^{3}}{\partial t^{3}} u+\left(a_{1}+a_{2}\right) \frac{\partial}{\partial t} u . \tag{1.2}
\end{equation*}
$$

Then the equation (E) with $B \equiv 0$ is reduced to

$$
\begin{equation*}
\frac{d}{d t} U(t)=A U(t)+F(t) \tag{1.3}
\end{equation*}
$$

where $U(t)=^{t}\left(u_{0}(t), u_{1}(t), u_{2}(t), u_{3}(t)\right), F(t)={ }^{t}(0,0,0, f(t))$, and

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{1.4}\\
-a_{1} & 0 & 1 & 0 \\
0 & -a_{2} & 0 & 1 \\
0 & 0 & -a_{3} & 0
\end{array}\right)
$$

Conversely if $U(t)$ satisfies (1.2), then $u_{0}(x, t)$ satisfies (E) with $B \equiv 0$. Let us denote

$$
N=\left\{u \in H^{2} ;\left.\left(\frac{\partial}{\partial n_{1}}+\sigma\right) u\right|_{s}=0\right\} .
$$

We introduce two Hilbert spaces according to Case I and Case II.

$$
\begin{align*}
\mathcal{H}_{1} & =D(a) \times H^{2} \cap \mathscr{D}_{L^{2}}^{1} \times \mathscr{D}_{L^{2}}^{1} \times L^{2} \tag{1.5}\\
\mathcal{H}_{2} & =H^{3} \cap N \times N \times H^{1} \times L^{2} .
\end{align*}
$$

These spaces are closed subspaces of $H^{3} \times H^{2} \times H^{1} \times L^{2}$ equipped with the canonical norm

$$
\begin{equation*}
\|U\|^{2}=\left\|u_{0}\right\|_{3}^{2}+\left\|u_{1}\right\|_{2}^{2}+\left\|u_{2}\right\|_{1}^{2}+\left\|u_{3}\right\|_{0}^{2} . \tag{1.6}
\end{equation*}
$$

According to Cases I and II, we take the definition domains of A as follows

$$
\begin{align*}
& D(A)_{1}=H^{4} \cap D(a) \times D(a) \times H^{2} \cap \mathscr{D}_{L^{2}}^{1} \times \mathscr{D}_{L^{2}}^{1} \tag{1.7}\\
& D(A)_{2}=N\left(a_{1}\right) \times H^{3} \cap N \times N \times H^{1}, \text { where } \\
& N\left(a_{1}\right)=\left\{u ; u \in H^{4} \cap N, a_{1} u \in N\right\} . \tag{1.8}
\end{align*}
$$

For convenience we note for $U \in D(A)_{i} \quad(i=1,2)$
$\|U\|_{D(A) i}^{2}=\left\|u_{0}\right\|_{4}^{2}+\left\|u_{1}\right\|_{3}^{2}+\left\|u_{2}\right\|_{2}^{2}+\|u\|_{1}^{2}$.
$D(A)_{1}$ and $D(A)_{2}$ are dense in \mathcal{H}_{1} and \mathcal{H}_{2} respectively. In fact, in view of the regularity theorem on elliptic boundary problems, we can show easily that $D(a)$ is dense in $\mathscr{D}_{L^{2}}^{1} \cap H^{2}$, and that $N\left(a_{1}\right)$ is dense in $N \cap H^{3}$.

Now we state our result.
Theorem. For any $f(t)$ in $\mathcal{E}_{t}^{1}\left(L^{2}\right)^{1)}$ and any initial data ($u(x, 0)$, $\left.\frac{\partial}{\partial t} u(x, 0), \frac{\hat{o}^{2}}{\partial t^{2}} u(x, 0), \frac{\partial^{3}}{\partial t^{3}} u(x, 0)\right)$ in $D(A)_{i}$, there exists a unique solution of the equation (E), satisfying the boundary condition (I) or (II). The solution $U(t)$ is in $\mathcal{E}_{t}^{1}\left(\mathcal{H}_{i}\right) \cap \mathcal{E}_{t}^{0}\left(D(A)_{i}\right)$. Moreover when we assume the compatibility condition on the initial data and the regularity of $f(t)$, then the solution has the same regularity as the initial data.
§2. Some lemmas. Let $\Phi(x)$ be the distance from x to the surface measured along a straight line issuing from S with the conormal direction. For $a=-\sum \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right)+$ (first order operator) put

$$
\begin{equation*}
\alpha(x)=\sum a_{i j}(x) \frac{\partial \Phi(x)}{\partial x_{i}} \frac{\partial \Phi(x)}{\partial x_{j}} . \tag{2.1}
\end{equation*}
$$

Lemma 1. (Decomposition of second order elliptic operators). Assume that a satisfies (1.1), then a is written in $\bar{\Omega}$ in the following form:
(2.2) $\quad a=n^{*}(x, D) n(x, D)-\sum_{j: \text { finite }} t_{j}(x, D) s_{j}(x, D)+($ first order term $)$.

Here t_{j} and s_{j} are first order operators and tangential on S. The operator n has the following form:

$$
\begin{equation*}
n(x, D)=\frac{\zeta(x)}{\sqrt{a(x)}} \sum_{i j}^{n} a_{i j}(x)\left(-\frac{\partial \Phi}{\partial x_{j}}(x)\right) \frac{\partial}{\partial x_{i}} \tag{2.3}
\end{equation*}
$$

where $\zeta(x)$ is a C^{∞}-function taking the value 1 in a small neighborhood of S, and vanishing outside of some neighborhood of S.

Remark. We say that a first differential operator is tangential at the boundary S, if

$$
t(x, D)=\Sigma c_{j}(x) \frac{\partial}{\partial x_{j}}+d(x)
$$

satisfies $\sum c_{j}(x) \cos \left(\nu, x_{j}\right)=0$, for all $x \in S$. Then we have the following relation:

$$
(t(x, D) u(x), v(x))=\left(u(x), t^{*}(x, D) v(x)\right) \text { for all } u, v \in H^{1}
$$

Lemma 2.

$$
\text { 1) } \frac{\partial}{\partial n_{i}}=\beta_{i}(x) \frac{\partial}{\partial n_{1}}, \quad\left(\beta_{i}(x)=\frac{\alpha_{i}}{\alpha_{1}}\right), \quad(i=2,3), x \in S .
$$

2) If $u \in H^{3}$ vanishes at the boundary, then $\left(a_{3}-\beta_{3} a_{1}\right) u$ vanishes also at the boundary.

Sketch of the proof. After a local transformation, let

$$
\begin{equation*}
a_{i}=b_{i}\left(x, y, D_{x}, \frac{\partial}{\partial y}\right) \frac{\partial}{\partial y}+c_{i}\left(x, y, D_{x}\right) \quad(i=1,2) \tag{2.4}
\end{equation*}
$$

[^0]where $b_{i}\left(x, y, D_{x}, \frac{\partial}{\partial y}\right)$ are first order operators and $c_{i}\left(x, y, D_{x}\right)$ do not contain $\frac{\partial}{\partial y}$. Then, $a_{i}(i=1,2)$ satisfy (H) if and only if the following relation holds
\[

$$
\begin{equation*}
b_{2}\left(x, 0, D_{x}, \frac{\partial}{\partial y}\right)=\beta_{2}(x) b_{1}\left(x, 0, D_{x}, \frac{\partial}{\partial y}\right) \tag{2.5}
\end{equation*}
$$

\]

Lemma 3. Assume that a_{1} and a_{2} satisfy (1.1), then there exists a positive constant δ such that for sufficiently large constant r, $R e\left(a_{1} u, a_{2} u\right)+r\|u\|_{0}^{2} \geq \delta\|u\|_{2}^{2}$ for all $u \in H^{2} \cap \mathscr{D}_{L^{2}}^{1}$ or for $u \in N$.

Lemma 4. Assume that a_{1}, a_{2}, and a_{3} satisfy (1.1) and (H), then we have

$$
R e \sum_{i j}^{n}\left(a_{3, i j}(x) \frac{\partial}{\partial x_{i}} a_{1} u, \frac{\partial}{\partial x_{j}} a_{2} u\right)+r\|u\|_{0}^{2} \geq \delta\|u\|_{3}^{2}
$$

for all $u \in D(a)$ or $u \in H^{3} \cap N$.
Lemma 5. Under the same assumption as in Lemma 4, there exists a positive constant C such that

$$
\left|\left(a_{1} u, a_{2} v\right)-\left(a_{2} u, a_{1} v\right)\right| \leq C\|u\|_{2}\|v\|_{1}
$$

for all $u \in H^{3} \cap N, v \in N$, or for $u \in D(a)$ and $v \in H^{2} \cap \mathscr{D}_{L^{2}}^{1}$.
Lemma 6. Under the same assumption as in Lemma 5, we have

$$
\left|\left(a_{1} u_{1}, a_{2} a_{3} u_{0}\right)-\left(a_{2} u_{1}, a_{1} a_{3} u_{0}\right)\right| \leq C\left\|u_{1}\right\|_{2}\left\|u_{0}\right\|_{3}
$$

for all $u_{0} \in N\left(a_{1}\right)$ and $u_{1} \in H^{3} \cap N$.
§3. Evolution equation and existence of solutions. We introduce the following hermitian form in \mathcal{H}_{1} defined by

$$
\begin{align*}
& (U, V)_{\mathscr{H}_{1}}=\sum_{i j}^{n}\left\{\left(a_{2, i j}(x) \frac{\partial}{\partial x_{j}} a_{1} u_{0}, \frac{\partial}{\partial x_{i}} a_{3} v_{0}\right)\right. \tag{3.1}\\
& \left.\quad+\left(a_{2, i j}(x) \frac{\partial}{\partial x_{j}} a_{3} u, \frac{\partial}{\partial x_{i}} a_{1} v_{0}\right)\right\}+r\left(u_{0}, v_{0}\right) \\
& \quad+\left\{\left(a_{2} u_{1}, a_{3} v_{1}\right)+\left(a_{3} u_{1}, a_{2} v_{1}\right)+r\left(u_{1}, v_{1}\right)\right\} \\
& \quad+\left\{2 \sum_{i j}^{n}\left(a_{3, i j}(x) \frac{\partial}{\partial x_{j}} u_{2}, \frac{\partial}{\partial x_{i}} v_{2}\right)+r\left(u_{2}, v_{2}\right)\right\}+2\left(u_{3}, v_{3}\right) .
\end{align*}
$$

In Case II we use the hermitian form of the following type:

$$
\begin{aligned}
& (U, V)_{\mathscr{H}_{2}}=\left[u_{0}, v_{0}\right]+\left\{\left(a_{2} u_{1}, a_{3} v_{1}\right)+\left(a_{3} u_{1}, a_{2} v_{1}\right)+r\left(u_{1}, v_{1}\right)\right\} \\
& \quad+\left\{2 \sum_{i j}^{n}\left(a_{3, i j}(x)\left(\frac{\partial}{\partial x_{j}}+\sigma_{j}\right) u_{2},\left(\frac{\partial}{\partial x_{i}}+\sigma_{i}\right) v_{2}\right)+r\left(u_{2}, v_{2}\right)\right\} \\
& \quad+2\left(u_{3}, v_{3}\right) .
\end{aligned}
$$

It would be natural to take the following hermitian form for [u_{0}, v_{0}]:

$$
\begin{aligned}
& \left(\left(n_{2}+\rho\right) a_{1} u_{0},\left(n_{2}+\rho\right) a_{3} v_{0}\right)+\left(\left(n_{2}+\rho\right) a_{3} u_{0},\left(n_{2}+\rho\right) a_{1} v_{0}\right) \\
& \quad+\sum_{j}\left(t_{2 j} a_{1} u_{0}, s_{2 j} a_{3} v_{0}\right)+\sum\left(s_{2 j} a_{3} u_{0}, t_{2 j} a_{1} v_{0}\right)+r\left(u_{0}, v_{0}\right)
\end{aligned}
$$

where $s_{2 j}$ and $t_{2 j}$ are first order tangential operators derived from the
decomposition of Lemma 1 with respect to the operator a_{2}.
However for this form the calculus by integration by parts concerning $(A U, U)_{\mathscr{H}_{2}}+(U, A U)_{\mathscr{H}_{2}}$ does not work well. Taking account of the fact that $\left(a_{3}-\beta_{3} a_{1}\right)\left(n_{2}+\rho\right) u_{0}$ and $\left(n_{2}+\rho\right) a_{1} u_{0}$ vanish at the boundary for $u_{0} \in N\left(a_{1}\right)$ (in view of Lemma 2),
we introduce the following hermitian form:

$$
\begin{align*}
& {\left[u_{0}, v_{0}\right]=\left(\left(n_{2}+\rho\right) a_{1} u_{0}, \gamma_{3}(x, D) v_{0}\right)+\left(\gamma_{3}(x, D) u_{0},\left(n_{2}+\rho\right) a_{1} v_{0}\right)} \tag{3.3}\\
& \quad+\sum_{j}\left\{\left(t_{2 j} a_{1} u_{0}, s_{2 j} a_{3} v_{0}\right)+\left(s_{2 j} a_{3} u_{0}, t_{2 j} a_{1} v_{0}\right)\right\}+r\left(u_{0}, v_{0}\right)
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{3}(x, D)=\left(a_{3}-\beta_{3} a_{1}\right)\left(n_{2}+\rho\right)+\beta_{3}\left(n_{2}+\rho\right) a_{1} . \tag{3.4}
\end{equation*}
$$

Here $\sigma_{i}(x)(i=1,2, \cdots, n)$ and $\rho(x)$ appearing in (3.2), (3.3) are arbitrary sufficiently smooth functions satisfying on S the following conditions:

$$
\begin{align*}
& \sum_{i j} a_{1, i j} \sigma_{j}(x) \cos \left(\nu, x_{i}\right)=\sigma(s) \text { on } S \\
& \left(\sum_{i j} a_{2, i j} \cos \left(\nu, x_{i}\right) \cos \left(\nu, x_{j}\right)\right)^{\frac{1}{2}}\left(\sum a_{1, i j} \cos \left(\nu, x_{i}\right) \cos \left(\nu, x_{j}\right)\right)^{-1} \sigma(s) \tag{3.5}\\
& \quad=\rho(s) \text { on } S .
\end{align*}
$$

By virtue of Lemma 3 and Lemma 4, there exists a positive constant C such that

$$
\begin{equation*}
\frac{1}{C}\|U\| \leq(U, U)_{\mathscr{H}_{i}} \leq C\|U\| \quad(i=1,2) \text { for } U \in \mathscr{H}_{i} \tag{3.6}
\end{equation*}
$$

Considering Lemmas 5 and 6 we obtain the following estimates for another constant C

Proposition 1. For any $U \in D(A)_{i}$, there exists a positive number β such that

Let us show that there exists $U \in D(A)_{i}$ such that $(\lambda I-A) U=F$ holds for any F in \mathscr{H}_{i}. For this purpose it suffices to prove that there exists $u \in H^{4} \cap D(a)$ or $u \in N\left(a_{1}\right)$ such that

$$
\begin{equation*}
\left(\lambda^{4}+\left(a_{1}+a_{2}+a_{3}\right) \lambda^{2}+a_{3} a_{1}\right) u=g \tag{3.9}
\end{equation*}
$$

holds for any g in L^{2} and $|\lambda|>\beta$. This is reduced to the theory of the elliptic boundary value problems containing a real parameter (c.f. S. Mizohata [1]).

Thus we are in a position to apply Hille-Yosida's theorem.
Proposition 2. When we assume $F(t) \in \mathcal{E}_{t}^{0}\left(D(A)_{i}\right)$ and the initial data $U(0) \in D(A)_{i}$, then we have a unique solution in $\mathcal{E}_{t}^{1}\left(\mathcal{H}_{i}\right) \cap \mathcal{E}_{t}^{0}\left(D(A)_{i}\right)$ of the equation (1.3) represented by

$$
\begin{equation*}
U(t)=T_{t} U(0)+\int_{0}^{t} T_{t-s} F(s) d s \tag{3.10}
\end{equation*}
$$

where T_{t} is the semi-group with the infinitesimal generator A.
Moreover we have the following energy inequality :

Proposition 3. Assume that $f(t)$ is in $\mathcal{E}_{t}^{1}\left(L^{2}\right)$, then we have

$$
\begin{aligned}
& \|U(t)\|_{D(A) i}+\left\|\frac{\partial^{4}}{\partial t^{4}} u(t)\right\|_{0} \leq C(T)\left\{\|U(0)\|_{D(A) i}+\|f(0)\|_{0}\right. \\
& \left.\quad+\int_{0}^{t}\left\|f^{\prime}(t)\right\|_{0} d t\right\}, \quad 0 \leq t<T
\end{aligned}
$$

for the solutions $U(t) \in \mathcal{E}_{t}^{0}\left(D(A)_{i}\right) \cap \mathcal{E}_{t}^{1}\left(\mathcal{H}_{i}\right)$ of the equation (1.3).
By Propositions 2 and 3, we can use the method of successive approximation to the equation (E). Thus we arrive at the Theorem stated in §1.

References

[1] S. Mizohata: Quelques problèmes au bord, du type mixte, pour des équations hyperboliques. Collège de France, 23-60 (1966-67).
[2] M. Schechter: General boundary value problems for elliptic equations. Comm. Pure Appl. Math., 19, 457-486 (1959).
[3] K. Yosida: An operator theoretical integration of the wave equations. J. Math. Soc. Japan, 8, 77-92 (1956).

[^0]: 1) $f(t) \in \mathcal{E}_{t}^{p}(H)(p=0,1,2, \ldots)$ means that $f(t)$ is p times continuously differentiable in t with values in H.
