56. A Note on the Automorphism Group of an Almost Complex Structure of Type (n, n')

By Isao NARUKI

(Comm. by Kinjirô Kunugi, M. J. A., April 12, 1968)

- 1. Introduction. The aim of this paper is to prove a theorem which asserts the finite-dimensionality of the automorphism group of a sub-elliptic almost complex structure of type (n, n') on a compact manifold. Its settling requires only a theorem of R. S. Palais and a theorem due to J. J. Kohn and L. Hörmander.
- 2. Definitions and theorems. Throughout this paper we assume the differentiability of class C^{∞} . Let M be a manifold of dimension n+n' and let S be a subbundle of its complexified tangent bundle whose fibers are of complex dimension n.

Definition 1. Let M, S be as above and \bar{S} be the complex conjugate bundle of S. The pair (M,S) is called an almost complex structure (on M) of type (n,n') if it satisfies the following conditions; (i) S_p (the fiber of S over p) contains no real element except 0 (i.e. $S_p \cap \bar{S}_p = (0)$) for any $p \in M$ (ii) [X,Y] is a cross-section of $S \oplus \bar{S}$ for any two cross-sections X, Y of S.

Definition 2. Let (M, S), (M', S') be two almost complex structures of type (n, n'). A diffeomorphism f of M onto M' is called an isomorphism of (M, S) onto (M', S') if $(df)_p$ maps S_p isomorphically onto $S'_{f(p)}$ for any $p \in M$. An isomorphism of (M, S) onto itself is called an automorphism of (M, S).

Let η be a real 1-form of M which vanishes on S and set $L_p^{\eta}(s,t) = i < (d\eta)_p | s \wedge \bar{t} > \text{ for } s, t \in S_p$. L_p^{η} is a hermitian form on S_p . For any fixed $p \in M$, we denote the real vector space of all such L_p^{η} 's by \mathcal{L}_p .

Definition 3. Let notations be as above. The almost complex structure (M, S) of type (n, n') is called sub-elliptic if it satisfies the following conditions; (i) $\dim_R \mathcal{L}_p = n'$ (ii) \mathcal{L}_p contains no semi-definite form except 0 for any $p \in M$.

From now on we assume that M is compact. Let X^j $(j=1,2,\cdots,\pi)$ be a series of cross-sections of S such that X^j_p $(j=1,2,\cdots,\pi)$ span S_p for any $p \in M$, and let ξ^k $(k=1,2,\cdots,\rho)$ be a series of (complex) forms such that each ξ^k vanishes on S and such that ξ^k_p , $\bar{\xi}^k_p$ $(k=1,2,\cdots,\rho)$ span $T^*_p(M)\otimes C$ for any $p\in M$. (The existence of

such ξ^k 's is guaranteed by the condition (i) of Definition 1.) Assuming that the Sobolev norms $||\ ||_{(s)}$ (s: real) on $C^{\infty}(M)$ are already introduced as usual, we also introduce $||\ ||_{(s)}$ for vector fields by setting:

$$||X||_{(s)} = \sum_{k=1}^{\rho} (||\xi^k(X)||_{(s)} + ||\bar{\xi}^k(X)||_{(s)})$$
 X: a vector field.

Now we collect a few results which will be used in the proof of our theorem.

Theorem 1. Let M, S, X^{j} $(j=1, 2, \dots, \pi)$ be as above and define a differential operator $\mathfrak{X} \colon C^{\infty}(M) \to (C^{\infty}(M))^{\pi}$ by setting $\mathfrak{X}u = (X^{1}u, \dots, X^{\pi}u)$. Then \mathfrak{X} is sub-elliptic (i.e. ${}^{\exists}c > 0$ ${}^{\forall}u \in C^{\infty}(M) \mid\mid u\mid\mid_{(\frac{1}{2})} \leq C\mid\mid \mathfrak{X}u\mid\mid_{(0)}$ if and only if (M, S) is sub-elliptic.

This theorem was first proved by J. J. Kohn [1] in the case n'=1. The general case is an easy consequence of Hörmander [2]. (See Theorems 1.1.5, Theorems 1.2.3.)

Now let f_t $(t \in R)$ be a 1-parameter subgroup of automorphisms of (M, S) and Y be its generating vector field. Then [X, Y] is a cross-section of S for any cross-section X of S. The converse is also true since M is compact, and we denote the Lie algebra of all such Y's by $\mathfrak{A}(M, S)$ (i. e. $\mathfrak{A}(M, S) = [Y \in \Gamma(T(M)) | [X, Y] \in \Gamma(S)$ for any $X \in \Gamma(S)$]). Then a theorem of R. S. Palais [3] asserts.

Proposition 1. The automorphism group of (M, S) is a Lie transformation group if and only if $\mathfrak{A}(M, S)$ is finite-dimensional.

We are now ready to prove the theorem announced in the introduction.

Theorem 2. The automorphism group of (M, S) is a Lie transformation group on M if (M, S) is a sub-elliptic almost complex structure of type (n, n') on a compact manifold M.

Proof. By Proposition 1 it is sufficient to prove that $\mathfrak{A}(M,S)$ is finite-dimensional. Suppose that Y is in $\mathfrak{A}(M,S)$ and that $\xi^k(k=1,2,\ldots,\rho)$, $X^j(j=1,2,\ldots,\pi)$ be as before. Taking the Lie derivative of $\xi^k(X^j)=0$ with respect to Y, we have

$$\mathcal{L}_{V}(\xi^{k})(X^{j}) + \xi^{k}([X^{j}, Y]) = 0.$$

Since the second term vanishes by the definition of $\mathfrak{A}(M,S)$, we obtain $\mathcal{L}_{V}(\xi^{k})(X^{j})=0$.

Using the formula $\mathcal{L}_{Y}(\omega) = d(Y \perp \omega) + Y \perp d\omega$, we rewrite this into $X^{j}(\xi^{k}(Y)) = \langle d\xi^{k} | X^{j} \wedge Y \rangle$.

Notice that the right hand side contains no differentiation of Y. Thus, applying Theorem 1 to the above

$$||\,\xi^{\scriptscriptstyle k}(Y)\,||_{\scriptscriptstyle (\frac{1}{2})}\leq C\,||\,Y\,||_{\scriptscriptstyle (0)}$$

where C is a positive constant independent of $Y \in \mathfrak{A}(M, S)$. Since Y is a real vector field, we obtain also

$$|||\bar{\xi}^{k}(Y)||_{\langle \underline{i}\rangle} = ||\overline{\xi^{k}(Y)}||_{\langle \underline{i}\rangle} = |||\xi^{k}(Y)||_{\langle \underline{i}\rangle} \leq C |||Y||_{\langle 0\rangle}.$$

Then by the definition of the $||\ ||_{(s)}$ for vector fields, we get $||\ Y\ ||_{(s)} \leq C\ ||\ Y\ ||_{(0)} \qquad \text{for} \quad Y \in \mathfrak{A}(M,S)$ if we take some larger C>0. Thus $\mathfrak{A}(M,S)$ is finite-dimensional. Q.E.D.

The author thanks Professors S. Matsuura and N. Tanaka for a number of stimulating conversations on this subject.

References

- J. J. Kohn: Boundaries of complex manifolds. Proc. Minnesota Conference on Complex Analysis. pp. 81-94, Springer-Verlag, Berlin (1965).
- [2] L. Hörmander: Pseudo-differential operators and non-elliptic boundary problems. Ann. Math., 83, 129-209 (1966).
- [3] R. S. Palais: A Global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc., 22 (1957).