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52. On Generalized Integrals. II

By Shizu NAKANISHI
University of Osaka Prefecture

(Comm. by Kinjird KUNUGI, M.J.A., April 12, 1968)

In the preceding paper [5], we proposed a question whether the set
of (E.R.) integrable functions can be obtained as a completion of the
set £ with respect to some reasonable topology and rank (£ stands for
the set of step functions on [a, b]). The aim of a series of these papers
is to give a positive answer to it. To do this, first of all in the Note I
we introduced on £ a topology and a rank so that &£ should become
a ranked space. We proved that, when u: {V,(f,)} is a fundamental

b
sequence in &, f,(x) converges to a finite function f(x) a.e. and S fa(@)dx
converges to a finite limit, that is, every fundamental sequence

u determines a function J(u)=f(x) and a value I(v)=lim Sb Fa(x)de.

n—oo

Moreover, in this paper, we will establish that when we agree with
two functions equal if they differ only in a set of measure zero, each
maximal collection u* in &£ determines a function which we can as-
sociate to this u*. We denote this function by J(u*). Let us denote,
by K, the set of those functions f(x) for which there exist fundamen-
tal sequences u with J(u)=f(x), and denote, by U, the set of all maxi-
mal collections. Then, J(u*) is a (1,1) mapping of U onto K (Theorem
1). Furthermore, K coincides with the set of (E.R.) integrable func-
tiong in the special sense (or A-integrable functions). It results from
I, Corollary 2)? that for # ¢ u* and v ¢ w*, we have I(u)=1I1(v). There-
fore, we can write this value I=I(u*). We take I(f)=I(J(f)) as the
value of the integral of f(x) belonging to K. Theorem 2 shows that

I(f)=(A) Sb f@)dz=(E.R.) S" f@dw for all fe K.

3. The mapping J(u*). Let us remark that in the ranked space
& defined in the Note I, the fundamental sequence is defined in the
following form: a monotone decreasing sequence of neighbourhoods
(Va(fn); n=0,1,2, ...} with V,(f,) €, is said to be fundamental if
there exists a sub-sequence {V,,(f,);%=0,1,2, - - -} such that f,,,= fu,.,
and v,,,<v,,, ., (without the equality).

We continue the study of the fundamental sequence in £. First,
we show a few Lemmas.

1) The reference number indicates the number of the Note.



226 S. NAKANISHI [Vol. 44,

Lemma 5. Given two measurable functions f(x) and g(x), for
each k>0, we always have the relation

‘ Si[f(x) + 9@ dz — (Y[ F@Tda+ S:[g(x)]"dw> [ <2k mes (B, UE,),

where E\={x;|f(®)| >k} and E,={x;|g(®)| >k}.

Lemma 6. If the neighbourhoods V(A, ¢; f) and V(B, 5 ; 9) sat-
isfy the following four conditions:

@ | f@—g@) | <e—n forall xecA,

() kmes{z;|f(@)—g@)|>k}<e/83—n foreach k>0,

(iii) ISZ[f(x)—g(x)]"dx <e/8—7n for each k>0,

(iv) ACB,
then V(A, ¢; IDV(B,71; 9).

Proof. Let heV(g), and put r@)=n(x)—g(x) and r(x)=g(x)
—f(x). Then h(x) can be written in the form k(z)=f(x) + r(x) + r(x),
and we have he V(f). In fact, [«] and [] are easily seen. [7] results
by using Lemma 5.

Lemma 7. If u:{V(A,, €,; f.)} s a monotone decreasing se-
quence such that lim ¢, =0 and mes ([a, b]\A,)<e, for each n, there is a

n—co

fundamental sequence v:{V(B,, ,; 9:)} such that v>u and B,CB,,,
for each n.
Lemma 8. If u:{V(A,, €.; f2)} and v:{V(Bun, Qu; gn)} are two
fundamental sequences such that
lim f,(x)=1im g, (x) a.e.,

n—c0 m—o

then there is a fundamental sequence w such that w>u and w>wv.

Proof. Without loss of generality, by Lemma 7 we can assume
that A,CA,,, and B,CB,.,. Let us choose, by induction, two index
sequences 7,<n,< --- and my;<m,; < - - - so that, for each ¢ the condi-
tions

D n<m<ng, i) €30, 24%0mys Nomy=4€0ms0s
can be satisfied. Put, for¢=0,1,2, ...,
D,= Azni n BZmi’ D2i+1=BZmi N A?ni.).]_ ; Ky =48 Eongr
K131 =48 Ny, 5 Bgy(X) = f2, (®), Dy y(@) = mei(x),
and denote, by w*, the sequence {V(D,, ;; h)}. Then, for this,
Vai(he) 2 Vyi4a(Rag.0) holds. For, if we put f(x):lnl_lg Ja(@), 7(2) = hyy.1(2)

—hgi(®), 7(X)=hyy(®) — f (x) and 7y(x) = hy;,, (%) — f(2), then, using by I,
Lemma 38, (i) : for every x € Dy, |7(%) | <&34;+ Namyy (1) Emes{x; |7(x)]

b b 1]
> 16} < 2(Eq, + Nomy)s (i) : Sa[’"(x)]kdx < Sa[rl(x)]’““dx!+Ha[rz(ac)]’“/”dx.

+ ke (mes {25 | r(x) | >k /2}+mes (x| 75(2) | > /2}) <3(ea0; + 7am,)- By def-
inition, (iv): D,CD,.,. Hence, the asserted relation results from
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Lemma 6, since 3(ey,;,+ Von;) <K3i/3—FKgsa.  Similarly, we have V.,
Ry )2V o(Rgsis). Moreover, we have lim k;=0 and mes ([a, b]\D,)

1=

<k;. Thus, there exists, by Lemma 7, a fundamental sequence w such
that w>w*. It follows easily that V,,(h,)2V,,,( f2n,), S0 that w*>u.
Similarly, we have w*<wv. This proves our assertion.

From now onwards, we don’t distinguish between two functions
which coincide almost everywhere. K denotes the set of those fune-
tions f(x) for which there exist fundamental sequences u with J(u)
=f(.%').

Proposition 3. In order that a set u* of fundamental sequences
should be a maximal collection, it is necessary and sufficient that there
exists a function f(x) belonging to K and such that uw*={u ; J(w)=f(x)}.

Proof. Necessity. Suppose that u* is a maximal collection.
Since then u*+¢, there is a w e u*. Put J(u)=f(x), then for v ¢ u*,
there is a w € u* such that w>u and w>v, so that by I, Collollary 2
J)=Jw)=f(x). Suppose, if possible, that there is a fundamental
sequence w such that w ¢ u* and J(w)=f(x). Then, it follows from
Lemma 8 that, by Zorn’s Lemma, there exists a maximal collection
containing w* strictly, contrary to the property of maximal of u*.
Sufficiency. Let be u, ¢ u* and u, ¢ u*, then, by Lemma 8 there is a
fundamental sequence w such that w>u, and w>wu, so that J(w)
=f(x). Therefore w e u*. Let v* be a set of fundamental sequences
containing w* and with the property (1*). Since u*=¢, there is a
ueu*. Therefore, for any v ¢ u*, there is a w ¢ v* such that w>wu
and w>v, so that J(v)=J(u)=f(x) holds. Hence, we have v ¢ u*, that
is, v*¥Cu*,

Therefore, each maximal collection #* in £ determines a function
which we can associate to this maximal collection. We denote this
function by J(u*). U denotes the set of all maximal collections u*.
Then, Proposition 3 asserts that:

Theorem 1. The mapping J(u*) of U onto K is (1, 1).

Since, by I, Corollary 2, we have I(u)=I(v) for every u ¢ u* and
v e u*, we can write I=I(u*) this value determined uniquely for u*.
Let us put, for fe K, I(f)=I(J7(f)). We will call this value the inte-
gral of f(x).

4. The special (E.R.) integral and the A-integral. The method
of the generalized integral, proposed by K. Kunugi in [3] and called
the (E.R.) integral, admits the investigation in abstract measure
spaces. The case of locally compact topological group provided with
a Haar measure was discussed completely by T. Ikegami in [2]. On
the other hand, K. Kunugi remarked in [3] that the method of
change of the variable admits the extension of the range of the integra-
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tion, and presented in [4] the precise definition of the integral. He
called this integral the (E.R.) integral of Stieltjes type with respect

to a function g(x), and denoted by (E.R.) Sb f(@)dg the value of this

integral. The definition of the integral of this type in abstract meas-
ure spaces can be found in [6]. H. Okano called it the (F.R. v) inte-
gral with respect to a measure v. Hence, from now onwards, we will
call the integral, introduced firstly by K. Kunugi, the special (E.R.)
integral.

A function f(z) is said to be A-integrable on [a, b], if

mes {x;|f(@)| >n}=0(1/n),
and if the limit of the integrals of truncated functions
lim "7 @1
exists. The value of the limit is said to be the A-integral of f(x) on
[a, b]. Titchmarsh [7] introduced the notion of this integral and
called it the Q integral.

As it is already proved by I. Amemiya and T. Ando [1], the
special (E.R.) integral is equivalent to the A-integral, in such a sense
that if one exists, then so does the other and their values are equal.

Lemma 9. If u:{V(A,, €.; f.)} 18 a fundamental sequence, then
we have

1) }cim kmes {x;|J(w)|>k}=0,

2) I(uw)=lim Sb [J(w]*dz,
k— oo a
where k runs through the set of all positive numbers.
Proof. Put y,=sup|f.(x)|. Then, for very sufficiently great

positive number £, if n is a positive integer for which %/2>7, holds,
we have by I, Lemma 3 k mes {x;|J(u)| >k}<2(k/2 mes {x;|J(u)
—fu@) | >Ek/2}+ E/2mes {x ;] fu(2) | >k /2}) < 2¢,, and so we obtain 1). By

Lemma 5, ‘ S" [J(u)]kdx—gz fo@)da ) <2k mes {2 ;| J(u)| >k} + l §” [J(w)

— fa(@)**dx ' <5¢,. Hence, 2) results from I, Corollary 1.

Lemma 10. If f(x)is the A-integrable function, then there exists
o fundamental sequence u:{V,(f,)} such that lim f,(x)= f(x).

Proof. Let us put, for k>0,

ne=|@ | r@ae—{ Lr@nraz|,

Ax=Fkmes {x;|f(x)| >k}
As f(x) is A-integrable, we have lim 7,=0 and lim 1,=0. Therefore,

k—o k—o

there is an increasing sequence n; (i=1,2, ...) of positive integers
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such that, if we put ¢;=max (max 2,, max n;, 1/2%), we have ¢,>4¢,,,.
kz2ng kzng

Put fi(x)=[f(x)]" and A,={x;|f(®)| <n;}. Then, as it is easily seen,
there exist a sequence {g,(®)} of step functions and a monotone in-
creasing sequence {B;} of closed sets, which have the following
properties:

D n>19:®)],

2) |fi(®)—g/(x)| <e;/b—a for all x e B,,

3) B;CA; and mes (4;\B;)<e;/n,.
Let us put £,=27¢;, then the sequence v:{V (B, £;; 9:)} is a monotone
decreasing sequence. In fact, if we put r(x)=g,,,(®)—g:(x), then (i)
|r@) | <k;—kyy for all xeB,. (ii):kmes{x;|r@)| >k}<k;/8—kKu
holds. Because, we have, for any k>0, k mes {x;|g,(x)— fi(x)| >k}
<kmes{x;|g,x)— fi(x)| >k, x € B;}+2n;(mes ([a,b]\A;) + mes (A;\B,))
<be;, and kmes{z;|fi.(¥)—fu(®)| >k}<kmes{z;|f(®)| >k+n}<e,.

D)2 | 1190018) = 0@V = [ i@~ @ | A< [ | 900s@)— Frra(@) | dat

+ SZlgi(x) ~ /DN AT <801+ 2 mes (10,011 Byo) + &0+ 2n, mes ((a, D1\ B)
[ tr@—r@nda|
<[l wr@rer—renas|+ || ar@i— @)z <ze. From Lemma

5, ||, i@ —ri@1da| <| ("1 ia@ —r@17d| + || L) — s @2aa
+kmes(E,UE,), where E,={x;|f,, (@) —f(x)|>k/2} for j=0,1.
Further we have k mes (E, U E,) <2(¢; +¢,.,), since E,={x ;| f(x)| >k/2
e Thus‘Sb [r@)]*dz |<'£ +/3—k;., results. (iv): From definition,

B,CB,.,. Therefore, applying Lemma 6, V(9)2V,.,(g,.,) holds.
Moreover, we have lim £;,=0, mes ([a, b]\B;)=0 and lim g,(®)=f (2).

t—00

<5(gs1t€0). Moreover, for any k>0,

Hence, our assertion holds, paying attention to Lemma 7 and I,
Lemma 4.

We now have the following ;

Theorem 2. K coincides with the set of all A-integrable functions
(or (E.R.) integrable functions in the special sense), and we have

b b
I(f)=(A) Sa f(@)de=(E.R.) S f@de.
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