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50. A Characterization of Haar Subspaces in C[a,b]*

By Yasuhiko IKEBE
Kyoto Sangyo University

(Comm. by Kinjir6 KUNUGI, M. J. .., April 12, 1968)

Let M be an n-dimensional subspace of the space C[a, b] with
Tchebycheff norm"

IIf]l--max
It is well known that the following conditions are mutually equivalent
[1]"
(A) If a pair of functions in M agrees on any set of n distinct points
in [a, b] then they agree on the entire interval [a, b];
(B) For any basis {g, ..., gn} 0: M and for any set of n distinct
points x, ., x in [a, b], the determinant det (g,(x)) is different from
0;
(C) Each element f in C[a, b] has a unique best approximation in M
(with respect to the Tchebycheff norm).

Any n-dimensional subspace M of C[a, b] satisfying one of the
above conditions (A)--(C) is known as a Haar subspace. The purpose
of this paper is to show that each one of the above conditions is
further equivalent to the following condition"
(D) For each f in C[a, b] which is not identically zero on [a, b] and
for each best approximation p in M to f, the following inequality is
valid"

(C)(D). Suppose that (C) is true and let p be a best approximation
in M to a non-zero function f in C[a,b]. We may assume that pC0.
Then, from uniqueness,

and therefore,

(D)(B). Suppose that (B) is false. We must show that there exists
a nonzero function f in C[a, b] and a best approximation p in M to f
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such that II P II :> 2 II f ll (actually, the inequality II P II > 2 II f ll is impos-
sible since II P--fll <[I 0-fll). Since (B) is false, there exists a set of
n distinct points, say {x, ..., Xn}, such that the determinant det(g(x))
vanishes, where (g, ..., g} is some basis for M. This means that
the rows and columns of the determinant are linearly dependent.
For each x in [a, b], let & be the n-vector [g(x), ..., g(x)]. Then,
from the row dependence, there exists a sets of real numbers,
(c,..., c}, such that

(1)

and

0= F. c- cl(sgn c)x
i=l I=1

Similarly, from the column dependence,

( 2 ) 0- , dg(xj), ]= 1, ..., n
for a set of real numbers {d, ..., dn} where ldl >0. Set

t--1

(3) p-- dg.
i--1

Then, p is in M and p:#0. We now assume that the constants
d, ..., d are so chosen that we have II P I1-1. We will construct a
function f in C[a, b] such that IIfll= 1 and 2p is a best approximation
in M to this f. This will complete the proof.

From the fact that I1P II 1, we have pointwise
l:>min {2p+1, 1}_> max {2p -1, --1}_>--1.

Choose a continuous function e on [a, b] such that
( 4 l>_min {2p+ 1, 1}>_e>_max {2p- 1, -1}_> -1.
But because p vanishes at x, ]-1, ..., n, we have

min {2p(x)+l, 1}=1 and max {2p(x)-l, --1}=-1
i-l, ..., n. Hence, we may impose on e condition
(5) e(x)=sgn x=l or -1 ]=1, ..., n
without disturbing condition (4). Now set f--2p-e. Then
-]1 e II =1. Furthermore, because of (1) and (5), the function 0 is in
the convex hull of the set {e(x)2" e(x)l=ll e {1=1}. This shows that
2p is a best approximation in M to f [1].
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