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50. A Characterization of Haar Subspaces in Cla, b]*

By Yasuhiko IKEBE
Kyoto Sangyo University

(Comm. by Kinjird KUNUGI, M. J. A., April 12, 1968)

Let M be an n-dimensional subspace of the space Cla, bl with

Tchebycheff norm:

| fll=max {| f(2) | :a<ax<b}
It is well known that the following conditions are mutually equivalent
[1]:
(A) If a pair of functions in M agrees on any set of » distinet points
in [a, b] then they agree on the entire interval [a, b] ;
(B) For any basis {g, - -+, 9,} of M and for any set of n distinct
points «,, - - -, x, in [a, b], the determinant det (9.(x,)) is different from
0;
(C) Each element fin C[a, b] has a unique best approximation in M
(with respect to the Tchebycheff norm).

Any n-dimensional subspace M of Cla, b] satisfying one of the
above conditions (A)—(C) is known as a Haar subspace. The purpose
of this paper is to show that each one of the above conditions is
further equivalent to the following condition :

(D) For each fin Cle, b] which is not identically zero on [a, b] and
for each best approximation p in M to f, the following inequality is
valid :
[Ipl<2] 1]
(C)=>(D). Suppose that (C) is true and let p be a best approximation
in M to a non-zero function f in Cla,b]. We may assume that p=0.
Then, from uniqueness,
p—FlI<0—f1
and therefore,
I I<[lo=FI+IFI<N0=FI+1FlI=2] 1]l
(D)=>(@B). Suppose that (B) is false. We must show that there exists
a nonzero function f in Cla, b] and a best approximation p in M to f
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such that ||p ||>>2]| f|| (actually, the inequality || p||>2]| f|| is impos-
sible since ||p—f||<||0—f|]). Since (B) is false, there exists a set of
n distinct points, say {z,, - - -, #,}, such that the determinant det (g.(x,))
vanishes, where {g,, - -+, 9,} is some basis for M. This means that
the rows and columns of the determinant are linearly dependent.
For each z in [a, b], let & be the n-vector [g,(x), - -, 9.(x)]. Then,
from the row dependence, there exists a sets of real numbers,
{e1, - - +, ¢4}, such that

(1) 0:;21 ci9%¢=:é1| ¢;| (sgn ¢,
and

é| ¢ |=1.
Similarly, from the column dependence,
(2) 0=} dgi@), i=1,--m

for a set of real numbers {d,, - - -, d,} where 7:‘ |d;|>0. Set
=1

(3) p=§ d.9;.

Then, p is in M and p+#0. We now assume that the constants
d,, ---,d, are so chosen that we have ||p||=1. We will construct a
function f in Cla, b] such that || f||=1 and 2p is a best approximation
in M to this f. This will complete the proof.

From the fact that || p ||=1, we have pointwise

1>min {2p+1,1}>max{2p—1, —1}> —1.
Choose a continuous function e on [a, b] such that
(4) 1>min {2p+1, 1}>e>max {2p—1, —1}> —1.
But because p vanishes at z,, =1, - - -, n, we have
min {2p(xz,)+1,1}=1 and max {2p(x,)—1, —1}=-1

j=1, ...,n. Hence, we may impose on ¢ condition
(5) e(x)=sgnx;=1or —1 j=1, ..., n
without disturbing condition (4). Now set f=2p—e. Then || f]||
=|le||=1. Furthermore, because of (1) and (5), the function 0 is in
the convex hull of the set {e(x)%:|e(x)|=||e||=1}. This shows that
2p is a best approximation in M to f [1].
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