48. Calculus in Ranked Vector Spaces. I

By Masae YAMAGUCHI

Department of Mathematics, University of Hokkaido

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1968)

§ 1. Ranked vector space. 1.1. Ranked space. Let E be a neighborhood space, i.e., with every element $x \in E$ there is associated a non-empty set $\mathfrak{B}(x) = \{V(x)\}$ of subsets of E such that

(1.1.1) (1) $V(x) \in \mathfrak{V}(x) \Rightarrow V(x) \ni x;$

(2) For any U(x), $V(x) \in \mathfrak{V}(x)$, there exists a $W(x) \in \mathfrak{V}(x)$ such that $W(x) \subset U(x) \cap V(x)$:

$$(3) E \in \mathfrak{V}(x).$$

Every element V(x) of $\mathfrak{V}(x)$ is called a *neighborhood* of a point $x \in E$.

(1.1.2) Definition. A neighborhood space E, on which a countably system $\mathfrak{V}_0, \mathfrak{V}_1, \mathfrak{V}_2, \dots, \mathfrak{V}_n, \dots$ consisting of neighborhoods $(E \in \mathfrak{V}_0)$ is defined, is called a ranked space with the indicator ω_0 if and only if for every $x \in E$, $U(x) \in \mathfrak{V}(x)$ and for an integer n $(0 \le n < \omega_0)$ there exists an integer m $(0 \le m < \omega_0)$ and a neighborhood $V(x) \in \mathfrak{V}(x)$ such that

 $m \ge n$, $V(x) \in \mathfrak{V}_m$ and $V(x) \subset U(x)$.

A metric space is a ranked space. Another examples of ranked spaces shall be found in the paper of K. Kunugi [1].

1.2. Convergence. Let $\{x_n\}$ be a sequence in a ranked space E. Now we shall consider a convergence introduced by K. Kunugi [2].

(1.2.1) Definition. We say that a sequence $\{x_n\}$ converges to x in a ranked space E, and we write $\{\lim_n x_n\} \ni x$ if and only if there exists a sequence $\{V_n(x)\}$ of neighborhoods and a sequence $\{\alpha_n\}$ of integers such that

$$V_0(x) \supset V_1(x) \supset V_2(x) \supset \cdots \supset V_n(x) \supset \cdots, 0 \le n < \omega_0,$$

$$\alpha_0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_n \le \cdots, 0 \le n < \omega_0,$$

$$\sup \alpha_n = \omega_0, \quad V_n(x) \ni x_n, \text{ and } \quad V_n(x) \in \mathfrak{B}_{\alpha_n}(x),$$

for $n = 0, 1, 2, \cdots$.

If $\{\lim x_n\} \ni x$, we call x a *limit* of sequence $\{x_n\}$.

Then the following propositions hold:

(1.2.2) Proposition. Let $\{x_{n_i}\}$ be an arbitrary subsequence of a sequence $\{x_n\}$ in a ranked space E. If $\{\lim_{n \to \infty} x_n\} \ni x$, then

$$\{\lim_{i} x_{n_i}\} \ni x.$$

M. YAMAGUCHI

(1.2.3) Proposition. Let $\{x_n\}$ be a sequence in a ranked space E. If $\{\lim x_{m+n}\} \ni x$, where m is a positive integer, then

$$\{\lim x_n\} \ni x.$$

(1.2.4) Proposition. Let $\{x_n\}$ be a sequence in a ranked space E such that $x_n = x$ for $n = 0, 1, 2, \cdots$. Then

$$\{\lim_{n} x_n\} \ni x.$$

In fact, let us check (1.2.4), the others being obvious. Since $\mathfrak{B}(x) = \{V(x)\} \neq \phi$, we can choose a neighborhood $U(x) \in \mathfrak{B}(x)$. By the assumption that E is a ranked space we can find an integer α_0 and a neighborhood $V_0(x) \in \mathfrak{B}(x)$ such that $V_0(x) \in \mathfrak{B}_{\alpha_0}$, $V_0(x) \subset U(x)$. Let $\beta_1 = \max(\alpha_0, 1)$, then we can find an integer α_1 and a neighborhood $V_1(x) \in \mathfrak{B}(x)$ such that $\alpha_1 \geq \beta_1$, $V_1(x) \in \mathfrak{B}_{\alpha_1}$ and $V_1(x) \subset V_0(x)$. Let $\beta_2 = \max(\alpha_1, 2)$, then analogously we can find an integer α_2 and a neighborhood $V_2(x) \in \mathfrak{B}(x)$ such that $\alpha_2 \geq \beta_2$, $V_2(x) \in \mathfrak{B}_{\alpha_2}$, and $V_2(x) \subset V_1(x), \cdots$.

Continuing this process, we obtain a sequence $\{V_n(x)\}$ of neighborhoods and a sequence $\{\alpha_n\}$ of integers such that

$$V_0(x) \supset V_1(x) \supset V_2(x) \supset \cdots \supset V_n(x) \supset \cdots, 0 \le n < \omega_0,$$

 $\alpha_0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_n \le \cdots, 0 \le n < \omega_0,$
 $\sup \alpha_n = \omega_0, \quad V_n(x) \ni x_n = x \text{ and } V_n(x) \in \mathfrak{B}_{\alpha_n},$

for $n = 0, 1, 2, \cdots$

$$\{\lim x_n\} \ni x.$$

1.3. Continuity. Let E_1 , E_2 be ranked spaces and $f: E_1 \rightarrow E_2$ a map from E_1 into E_2 .

(1.3.1) Definition. We say that a map $f: E_1 \rightarrow E_2$ is continuous at the point a if and only if

 $\{\lim x_n\} \ni a \Rightarrow \{\lim f(x_n)\} \ni f(a).$

 $f: E_1 \rightarrow E_2$ continuous means that it is continuous at each point of E_1 . One easily verifies that the compose of continuous maps is also continuous. $f: E_1 \rightarrow E_2$ is called a *homeomorphism* if and only if $f: E_1 \rightarrow E_2$ is bijective and $f: E_1 \rightarrow E_2$ as well as $f^{-1}: E_2 \rightarrow E_1$ are continuous.

1.4. Separated ranked space. When a sequence $\{x_n\}$ converges to x in a ranked space E, it is possible that $\{\lim x_n\} \ni x, \{\lim x_n\} \ni y$ and $x \neq y$. In order to get rid of these cases we introduce the following axiom [3].

(1.4.1) Axiom (T₀). Let E be a ranked space with the indicator ω_0 . Then, for any elements $x, y \in E$ with $x \neq y$, there exists an integer $\alpha(x, y)$ ($0 \leq \alpha(x, y) < \omega_0$) such that for any integers m, n with m, n $\geq \alpha(x, y)$ and for any neighborhoods $V(x) \in \mathfrak{V}(x)$, $V(y) \in \mathfrak{V}(y)$,

 $V(x) \in \mathfrak{B}_m, V(y) \in \mathfrak{B}_n \Rightarrow V(x) \cap V(y) = \phi.$

(1.4.2) Definition. A ranked space which satisfies the axiom (T_0) is called a *separated ranked space*.

208

Then the following proposition is easily proved.

(1.4.3) Proposition. Suppose that Axiom (T_0) holds in a ranked space E and let $\{x_n\}$ be a sequence in E. If $\{\lim x_n\} \ni x$ and $\{\lim x_n\} \ni y$, then

$$x = y$$
.

By this Proposition, if a ranked space E satisfies Axiom (T_0) and $\{\lim x_n\} \ni x$, then the limit of the sequence $\{x_n\}$ is uniquely determined. So in this case we may write

$$\lim_n x_n = x$$

instead of $\{\lim x_n\} \ni x$.

1.5. Direct product of ranked spaces. Let E_1, E_2, \dots, E_m be a family of ranked spaces with the indicator ω_0 , i.e., with every element $x \in E_i$ there is associated a non-empty set $\mathfrak{B}_{E_i}(x) = \{V(x)\}$ satisfying Condition (1.1.1) and further in each space E_i there is a countable system $\mathfrak{B}_0(E_i), \mathfrak{B}_1(E_i), \mathfrak{B}_2(E_i), \dots, \mathfrak{B}_n(E_i), \dots$ of families of neighborhoods such that, for any $x \in E_i$, $V(x) \in \mathfrak{B}_{E_i}(x)$ and for an integer n $(0 \le n < \omega_0)$, there exists an integer l and a neighborhood $U(x) \in \mathfrak{B}_{E_i}(x)$ satisfying the following conditions:

 $l \ge n$, $U(x) \in \mathfrak{V}_l(E_i)$ and $U(x) \subset V(x)$.

We denote by $E_1 \times E_2 \times \cdots \times E_m$ (or $\times E_i$) the set of all elements (x_1, x_2, \dots, x_m) , where $x_1 \in E_1, x_2 \in E_2, \dots, x_m \in E_m$. If $E_1 = E_2 = \cdots = E_m = E$, we denote by E^m instead of $\times E_i$.

We now define a neighborhood system $\mathfrak{V}_{\times E_i}(z)$ to each point $z = (x_1, x_2, \dots, x_m) \in \times E_i$ as follows:

 $\mathfrak{V}_{\times E_i}(z) = \{V_1(x_1) \times V_2(x_2) \times \cdots \times V_m(x_m);$

 $V_1(x_1) \in \mathfrak{B}_{E_1}(x_1), V_2(x_2) \in \mathfrak{B}_{E_2}(x_2), \cdots, V_m(x_m) \in \mathfrak{B}_{E_m}(x_m) \}.$

Then it is obvious that $\times E_i$ is a neighborhood space, i.e., it satisfies Condition (1.1.1).

We now define a countably system $\mathfrak{V}_0(\times E_i)$, $\mathfrak{V}_1(\times E_i)$, \cdots , $\mathfrak{V}_n(\times E_i)$, \cdots in the following way:

$$\mathfrak{V}_n(\times E_i) = \{ V_1 \times V_2 \times \cdots \times V_m ; V_1 \in \mathfrak{V}_{\alpha_1}(E_1), V_2 \in \mathfrak{V}_{\alpha_2}(E_2), \cdots, V_m \in \mathfrak{V}_{\alpha_m}(E_m) \text{ and } n = \min(\alpha_1, \alpha_2, \cdots, \alpha_m) \}$$

for $n = 0, 1, 2, \cdots$.

Then $E_1 \times E_2 \times \cdots \times E_m$ is a ranked space with the indicator ω_0 . In fact, for any $z = (x_1, x_2, \cdots, x_m) \in \times E_i$, $W(z) = V_1(x_1) \times V_2(x_2) \times \cdots \times V_m(x_m) \in \mathfrak{V}_{\times E_i}(z)$ and for an integer n $(0 \le n < \omega_0)$, since E_i is a ranked space, there is an integer α_i and a neighborhood $U_i(x_i) \in \mathfrak{V}_{E_i}(x_i)$ such that

$$\alpha_i \geq n$$
, $U_i(x_i) \in \mathfrak{V}_{\alpha_i}(E_i)$ and $U_i(x_i) \subset V_i(x_i)$.

for i=1, 2, ..., m.

Let

$$W'(z) = U_1(x_1) \times U_2(x_2) \times \cdots \times U_m(x_m)$$

and $p = \min(\alpha_1, \alpha_2, \dots, \alpha_m)$, then we have

 $p \ge n$, $W'(z) \subset W(z)$, $W'(z) \in \mathfrak{V}_{\times E_i}(z)$ and $W'(z) \in \mathfrak{V}_p(\times E_i)$. Therefore $E_1 \times E_2 \times \cdots \times E_m$ is a ranked space. We shall call $E_1 \times E_2 \times \cdots \times E_m$ (or $\times E_i$) the direct product of ranked spaces E_1, E_2, \cdots, E_m . If $E_1 = E_2 = \cdots = E_m = E$, we denote by E^m instead of $\times E_i$.

In the direct product $\times E_i$ the following proposition holds:

(1.5.1) Proposition. Let $\{z_n\} = \{(x_{n1}, x_{n2}, \dots, x_{nm})\}$ be a sequence in a direct product $E_1 \times E_2 \times \dots \times E_m$ of ranked spaces E_1, E_2, \dots, E_m and $z = (x_1, x_2, \dots, x_m) \in \times E_i$, then $\{\lim z_n\} \ni z$ if and only if $\{\lim x_{nk}\}$ $\ni x_k$ for $k = 1, 2, \dots, m$.

Proof. (a) Suppose that $\{\lim z_n\} \ni z$, i.e., there exists a sequence $\{W_n(z)\}$ of neighborhoods of z and a sequence $\{\gamma_n\}$ of integers such that

$$\begin{split} W_0(z) \supset W_1(z) \supset W_2(z) \supset \cdots \supset W_n(z) \supset \cdots, \ 0 \leq n < \omega_0, \\ \gamma_0 \leq \gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_n \leq \cdots, \ 0 \leq n < \omega_0, \\ \sup_n \gamma_n = \omega_0, \ W_n(z) \ni z_n, \ \text{and} \ W_n(z) \in \mathfrak{V}_{\gamma_n}(\times E_i), \end{split}$$

for $n = 0, 1, 2, \cdots$. Let

$$W_n(z) = V_{n_1}(x_1) \times V_{n_2}(x_2) \times \cdots \times V_{n_m}(x_m),$$

where $n = 0, 1, 2, \cdots$.

By assumption we have

$$V_{n1}(x_1) \in \mathfrak{B}_{E_1}(x_1), V_{n2}(x_2) \in \mathfrak{B}_{E_2}(x_2), \cdots, V_{nm}(x_m) \in \mathfrak{B}_{E_m}(x_m), \\ V_{n1}(x_1) \in \mathfrak{B}_{\alpha_{n1}}(E_1), V_{n2}(x_2) \in \mathfrak{B}_{\alpha_{n2}}(E_2), \cdots, V_{nm}(x_m) \in \mathfrak{B}_{\alpha_{nm}}(E_m), \\ \gamma_n = \min(\alpha_{n1}, \alpha_{n2}, \cdots, \alpha_{nm}).$$

and

Since $W_n(z) \supset W_{n+1}(z)$, we have

$$V_{nk}(x_k) \supset V_{(n+1)k}(x_k),$$

for $n=0, 1, 2, \cdots$ and $k=1, 2, \cdots, m$. Further $W_n(z) \ni z_n$ implies $V_{nk}(x_k) \ni x_{nk}$.

Thus we have

$$V_{0k}(x_k) \supset V_{1k}(x_k) \supset V_{2k}(x_k) \supset \cdots \supset V_{nk}(x_k) \supset \cdots, \quad 0 \le n < \omega_0,$$

$$V_{nk}(x_k) \ni x_{nk}, \quad V_{nk}(x_k) \in \mathfrak{B}_{ank}(E_k) \text{ and } \alpha_{nk} \ge \gamma_n,$$

where $n=0, 1, 2, \dots$ and $k=1, 2, \dots, m$. Since $\sup \gamma_n = \omega_0$, we can find a subsequence $\{\alpha_{n_ik}\}$ of $\{\alpha_{nk}\}$ such that

$$\alpha_{n_0k} < \alpha_{n_1k} < \alpha_{n_2k} < \cdots < \alpha_{n_ik} < \cdots, 0 \le i < \omega_0$$

Here we may assume that $n_0 = 0$.

We now define two sequences $\{U_{nk}(x_k)\}$ and $\{\beta_{nk}\}$ as follows:

$U_{0k}(x_k) = V_{0k}(x_k)$	$\ni x_{\mathfrak{o}k}$	$\mathfrak{V}_{\alpha_{0k}}(E_k)$	$\beta_{0k} = \alpha_{0k}$
$U_{1k}(x_k) = V_{0k}(x_k)$	$\ni x_{1k}$	$\mathfrak{V}_{\alpha_{0k}}(E_k)$	$\beta_{1k} = \alpha_{0k}$
$U_{(n_1-1)k}(x_k) = V_{0k}(x_k)$	$\ni x_{(n_1-1)k}$	$\mathfrak{V}_{\alpha_{0k}}(E_k)$	$\beta_{(n_1-1)k} = \alpha_{0k}$
$U_{n_1k}(x_k) = V_{n_1k}(x_k)$	$\ni x_{n_1k}$	$\mathfrak{V}_{\alpha_{n_1k}}(E_k)$	$\beta_{n_1k} = \alpha_{n_1k}$
$U_{(n_1+1)k}(x_k) = V_{n_1k}(x_k)$	$\ni x_{(n_1+1)k}$	$\mathfrak{V}_{\alpha_{n_1k}}(E_k)$	$\beta_{(n_1+1)k} = \alpha_{n_1k}$

210

Calculus in Ranked Vector Spaces. I

 $U_{(n_2-1)k}(x_k) = V_{n_1k}(x_k) \quad \exists x_{(n_2-1)k} \quad \mathfrak{V}_{\alpha_{n_1k}}(E_k)$ $\beta_{(n_2-1)k} = \alpha_{n_1k}$ $U_{n_{2}k}(x_{k}) = V_{n_{2}k}(x_{k}) \qquad \exists x_{n_{2}k} \qquad \mathfrak{V}_{\alpha_{n_{2}k}}(E_{k})$ $\beta_{n_2k} = \alpha_{n_2k}$

Then we have

$$U_{nk}(x_k) \in \mathfrak{B}_{E_k}(x_k),$$

 $U_{0k}(x_k) \supset U_{1k}(x_k) \supset U_{2k}(x_k) \supset \cdots \supset U_{nk}(x_k) \supset \cdots, 0 \le n < \omega_0,$
 $\beta_{0k} \le \beta_{1k} \le \beta_{2k} \le \cdots \le \beta_{nk} \le \cdots, 0 \le n < \omega_0,$
 $\sup_n \beta_{nk} = \omega_0, \ U_{nk}(x_k) \ni x_{nk}, \text{ and } U_{nk}(x_k) \in \mathfrak{B}_{\beta_{nk}}(E_k).$
 $\therefore \{\lim_n x_{nk}\} \ni x_k,$

where $k=1, 2, \cdots, m$.

(b) Suppose conversely that $\{\lim x_{nk}\} \ni x_k$ for $k=1, 2, \dots, m$ i.e., there exists a sequence $\{V_{nk}(x_k)\}$ of neighborhoods of x_k and a sequence $\{\alpha_{nk}\}$ of integers such that

$$V_{0k}(x_k) \supset V_{1k}(x_k) \supset V_{2k}(x_k) \supset \cdots \supset V_{nk}(x_k) \supset \cdots, 0 \le n < \omega_0,$$

$$\alpha_{0k} \le \alpha_{1k} \le \alpha_{2k} \le \cdots \le \alpha_{nk} \le \cdots, 0 \le n < \omega_0,$$

$$\sup_{\alpha} \alpha_{nk} = \omega_0, \quad V_{nk}(x_k) \ni x_{nk}, \text{ and } \quad V_{nk}(x_k) \in \mathfrak{B}_{\alpha_{nk}}(E_k),$$

for $n = 0, 1, 2, \dots$ and $k = 1, 2, \dots, m$.

 \mathbf{Put}

$$W_{0}(z) = V_{01}(x_{1}) \times V_{02}(x_{2}) \times \cdots \times V_{0k}(x_{k}) \times \cdots \times V_{0m}(x_{m})$$

$$W_{1}(z) = V_{11}(x_{1}) \times V_{12}(x_{2}) \times \cdots \times V_{1k}(x_{k}) \times \cdots \times V_{1m}(x_{m})$$

$$W_{n}(z) = V_{n1}(x_{1}) \times V_{n2}(x_{2}) \times \cdots \times V_{nk}(x_{k}) \times \cdots \times V_{nm}(x_{m})$$

then since $V_{ik}(x_k) \supset V_{(i+1)k}(x_k)$, where $k = 1, 2, \dots, m$ and $i = 0, 1, 2, \dots$ We have

$$W_0(z) \supset W_1(z) \supset W_2(z) \supset \cdots \supset W_n(z) \supset \cdots, \quad 0 \leq n < \omega_0.$$

Let

$$\gamma_p = \min(\alpha_{p_1}, \alpha_{p_2}, \cdots, \alpha_{p_m})$$

for $p=0, 1, 2, \cdots$, then it follows, using $\alpha_{ik} \leq \alpha_{(i+1)k}$ $(k=1, 2, \cdots, m)$ and i=0, 1, 2, ...), that

$$\gamma_0 \leq \gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_n \leq \cdots, \ 0 \leq n < \omega_0$$

Being $\sup_{n} \alpha_{nk} = \omega_0$ $(k=1, 2, \dots, m)$, we get $\sup_{n} \gamma_n = \omega_0$.

$$\sup \gamma_n = \omega_0.$$

It is obvious that we have

 $W_n(z) \in \mathfrak{V}_{r_n}(\times E_i)$ and $W_n(z) \ni z_n$, for $n=0, 1, 2, \cdots$. Therefore

$$\{\lim z_n\} \ni z.$$

If E_1, E_2, \dots, E_m are a family of separated ranked spaces, then it is clear that $\times E_i$ is also a separated ranked space.

M. YAMAGUCHI

References

- K. Kunugi: Sur les espaces complets et régulièrement complets. I. Proc. Japan Acad., 30, 553-556 (1954).
- [2] —: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318– 322 (1967).
- [3] ——: loc. cit.