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69. On the Norlund Summability of the Conjugate
Series of Fourier Series

By Hiroshi HIROKAWA® and Ikuko KAYASHIMA*®
(Comm. by Kinjird6 KUNUGI, M. J. A., May 13, 1968)

§1. Let {p,} be a sequence such that P,=p,+p,+ - - - + 0,0 for

n=0,1,2, .... A series f} a, with its partial sum s, is said to be

n=0
summable (N, p,) to sum s, if (9,8;+ 0,181+ -+ + +DSn)/ P,—8 a8 n—c0.
The choice p,=1/(n+1) yields the familiar harmonic summability.
Let f(t) be a periodic finite-valued function with period 2z and inte-
grable (L) over (—m, n). Let its Fourier series be

(1.1) _;.a(,+ 37 (@ OS 1E+ by sin n) =37 Au(D).
n=1 n=0
Then the conjugate series of the series (1.1) is
1.2) 37 (by €08 nt—ay, sin nt)= 3" Bau(t).
n=1 n=1

Throughout this paper, we write

pO=L{f@+O+f@—D-2/@)}, D)= SI ()| du,

HO=LE+—s@—t),  TO=]|v)|

and 7=[1/t], where [4] is the integral part of 4.
On the Norlund summability of Fourier series at a given point «,
the following results are known. Iyengar [3] proved that if
o(t)y=o0(1/logt™) as t—+0,
then the series (1.1) at t=2 is harmonic summable to sum f(x).
Later, generalizing this result, Siddiqgi [5] proved that if
d(t)=o(t/logt") as t—+0,
then the series (1.1) at t=x is harmonic summable to sum f(x).
Further, generalizing this result, Pati [7] proved the following
Theorem A. Let {p,} be a sequence such that
P,>0, p, |, P,—moo and logn=0(P,).
If
O(t)=o(t/P) as t—+0,
then the series (1.1) at t=x is summable (N, p,) to sum f(x).
Furthermore Rajagopal [8] proved the following
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Theorem B. Let a function p(t) be monotone non-increasing and
positive for t=0. Let p,=pn) and let

1.3) P(t)_——.g’p(u)du—m as  t—soco.
0
If, for some fixed 6, 0<d<1,
s d P 4, _
(1.4) Sl@(t)_d? 1D dt=oP,) as m—seo,

then the series (1.1) at t=1x is summable (N, p,) to sum f(x).

It should be noted that Theorem B is a generalization of Theorem
A. Thus, among these results, Theorem B is the most general. We
now remark that, from Rajagopal [8, Lemma (a)], (1.3) and (1.4) to-
gether imply
(1.5) d(t)=o0(t) as t—+0.
On the other hand, the summability (N, p,) of the conjugate series of
Fourier series at a given point = has been considered by Siddiqi [6],
Dikshit [1, 2], Saxena [4] and others, respectively. Siddiqi proved
that if

U(t)y=o(t/logt) as t—+0,

then the series (1.2) at t=w« is harmonic summable to sum

(1.6) Fa@y=—1 S"q,(t) cot L dt
T Jo 2

provided that the integral exists as a Cauchy integral at origin. A
conjugate-analogue of Pati’s Theorem A was obtained by Dikshit [1].
That result was generalized independently by Dikshit [2] and by
Saxena [4]. Their theorems are as follows.

Theorem C. (Dikshit [2]). Let {p,} be a sequence such that

.7 P.>0, P, |, P,—oo, and a(n)logn=0(P,),
where a(t) is a positive monotone non-decreasing function. If
(1.8) Tt)=o0(a(d/D)t/P,) as t—+0,

then the series (1.2) at t=x is summable (N, p,) to sum f(x) provided
that the integral in (1.6) exists as a Cauchy integral at origin.
Theorem D. (Saxena [4]). Let {p,} be a sequence such that
(1-9) pn>0’ Dn l. ’ Pn_"oo’ and lOg n:O(ﬁ(Pn)),
where B(t) is a positive monotone non-decreasing function such that
t/B(t) is also monotone non-decreasing. If
1.10) rt)y=o(t/B(P,)) as t—+0,
then the series (1.2) at t=ux is summable (N, p,) to sum f(x) provided
that the integral in (1.6) exists as a Cauchy integral at origin.
Remark. It is easily proved that the assumption on monotone of
B(®) is superfluous.
Theorem E. (Saxena [4]). Let {p,} be a sequence such that
pn>0) Pn l ’ P"—->OO, and lOgnzo(T(Pn))y
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where y(t) is a positive function such that
¢ P14,
S%m 7 dt=0(P,) as n—co.
If
T@®)=o(/y(P)) as t—+0,

then the series (1.2) at t=x is summable (N, p,) to sum f(x) provided
that the integral in (1.6) exists as a Cauchy integral at origin.

It is obvious that Theorem E is a generalization of Theorem D.

The purpose of this paper is to prove the following two theorems.

Theorem 1. Let {p,} and P(t) be defined as in Theorem B. If,
for some fixed 0, 0<0<1,

(1.11) YI yf(t)% P (1t/t) dt=0(P,) as m—oo,

then the series (1.2) at t=x is summable (N, p,) to sum f(x) provided
that the integral in (1.6) exists as a Cauchy integral at origin.
Theorem 2. If Theorem C holds, then Theorem D also holds
and conversely, when
(1.12) all/t)/a(z)=01) as t—+0,
if Theorem D holds, then Theorem C also holds.
Obviously there exists a function a(t) which does not satisfy the con-
dition (1.12). Thus we see that Theorem C is better than Theorem
D. We do not know however a relation between Theorems C and E,
when the function a(t) does not satisfy the condition (1.12).
§2. Proof of Theorem 1. Let us write

§.(2) = kéBk(x) and L (@) =— 3 pu_ (@),

P, i=o
Then we have
1 cos (n+ %) t
3,(2)— _1 o\ 2/
8@~ f@) = So«w T
1 (s cos ('n—l-—;‘—)t
=\ pt)—— 2L dt+y,,
ngow) sin ¢/2 T
where, by the Riemann-Lebesgue theorem,
1( cos (n + —1—) t
2.1 = t)—— = _dt—0 n—o0,
@1 = Sa"’( T as Mmoo
and

E(@) — @)= éopn_k{gk(x)—f(x>}/Pn
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cos (k+ 1)
P in ¢/2

1 K, (1)
—ﬁpngw(t\ D di

where K,(t)= Zn; Pn_i COS (lc-|-—2-)t and, by (2.1) together with the reg-
k=0

at+&,

Swt)zm .

ularity of the method of summation (N, p,),
En:Fl‘ Z Dn- kﬂk—’O as mn—oo,

Thus we have
1
== [ o ¢
t.(x)— = t dt 1
(@)— f(x) =P \o \lf() nt/2 +o(1)
say. Since the integral in (1.6) exists, we have

1
iS"«p(t) cos Ldt=o0(1) as n—oco.
T Jo 2

Hence

I,=

v K0
So v )sm t/2 stz

3|H

nP,
1 o En(&)—Pycost/2 4 4
nP S () sin ¢/2 +oll)
1 (= ( n cos(k+1/2)t—cost/2
= t n- .
P, So v k‘éop f sin /2
Since |sin kt| <k|sin t| when k is an positive integer, we get
u cos(k+1/2)t—cost/2 —_o% sin (k+1)t/2 sin kt/2
Z,Pnr sin t/2 & Pre sin £)2
=0(33 kp,-o(k+1)1)

=00t 33 p,-s)
=0(n?P,t).
Hence, by an analogue of (1.5),

1
I,= (
0 P

)dt-|—o(1).

Sf (8 ['nantdt) +o()

n

=O(n§f|«p(t)]dt>+o(1)=o(1) as n—oo.

Thus, in order to prove Theorem, it is sufficient to prove that J,=0(1)
as n—oo. But this is proved by an estimation similar to one of J, in
the proof of Theorem B. Thus our Theorem is completely proved.
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§ 3. Proof of Theorem 2. Let h(t) be a continuous function

defined over t=0 such that

ht)=P, (t=n) and h(t)=Ilinear (elsewhere).
Then the function A(t) is strictly increasing so that the function A(t)
has a inverse function k(f) such that n=k(P,) and k(t) is strictly
increasing. We shall now prove the first part of Theorem. Let {p,}
and J(¢) satisfy the condition of Theorem D. Then we define a(t) by
a@)="h(t)/B()). Since the functions A(t) and t/B(t) are monotone
non-decreasing, the function «a(t) is also so. Then, by (1.9),

log n=0(8(P,))=O0(P,/a(n))
and, by (1.10),
T)=o(t/BP))=o(a(r)t/P)=0(a(1/t)t/P,).
These prove the first part of Theorem. To prove the converse part,
we set B(t)=t/a(k(t)). Then we see that t/B(t)=a(k(t)) is monotone
non-decreasing and, by (1.7),
log n=0(P,/a(n))=0(P,|a(k(P,))=O0(B(P,)),
and, by (1.8) and (1.12),
T(t)y=o(a(l/t)t|P,)=o(a(r)t/P)=o(a(k(P))t/P)=o0(t/B(P.)).

Thus the proof is complete.

§4. We shall now show that Theorem 1 is a generalization of
Theorem C. For the proof, it is sufficient to prove that the condition
of Theorem C implies the one of Theorem 1. Let {p,} be given as in
Theorem C. Then we define a function p(t) by

p(t)=p, for nlt<n+1, n=0,1,2, .-..
Further define a function P(t) as in (1.8). Then, by the condition, the
function p(t) is monotone non-decreasing and positive for £=0. By
(1.7) and (1.8), we get, t—+0,
P(1/t)—>oc0, P.~PQ1/t), a@l/t)/PA/t)=0(/logt™),
and
U(ty=o(a(1l/t)t/P(1/t)).
Hence we have

Sm)d P(l/t) At O(S (1) t d P/t dt)

PAJD At ¢
=o(f, a0 gy wot+ )i (3) 34
=o(g’: lp(“ dt) +o(Py)

=0(Pn)
which shows that (1.11) holds. Thus the proof is complete.
We shall next show that Theorem 1 is also a generalization of
Theorem E. Let {p,} be given as in Theorem E. Then we define func-
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tions p(¢f) and P(f) as in the above case. Since the sequence {p,} is
monotone decreasing,

lp(%)<<n+1)pnan=P,gP(1) ,

t t
when n<1/t<n+1, n=0,1,2, .... Thus we have, by the condition,
S” w3 PA/Y dt=o(y /) ldt+§” PAjy _l_dt)
1 dt t L r(P) ¢ L r(P) t
=o(f, T +%)
L y@®P) ¢
=o(P,),

which shows that (1.11) holds. Thus the proof is complete.
§ 5. From the argument in § 4, we have the following theorems
as corollaries of Theorem B. These are analogues of Theorems C
and E.
Theorem 3. Let {p,} and a(t) be defined as in Theorem C. If
O()=o(a(1/D)t/P) as t—+0,
then the series (1.1) at t=x is summable (N, p,) to sum f(x).
Theorem 4. Let {p,} and 7(t) be defined as in Theorem E. If
o(t)=o0(t/y(P.)) as t—+0,
then the series (1.1) at t=2x is summable (N, p,) to sum f(x).
It should be noted that these Theorems are also proved directly
by analogous methods to those of the proofs of Theorems C and E.
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