472 Proc. Japan Acad., 44 (1968) [Vol. 44,

106. o-Spaces and Closed Mappings. I

By Akihiro OKUYAMA
Osaka Kyoiku University
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1. Introduction. In our previous paper [7] we have introduced
the notion of a ¢-locally finite net as a generalization of a countable
net (cf. [2], [5]) and studied the spaces with ¢-locally finite nets as a
class of a topological spaces which contains all metric spaces.

Definition. A collection B of subsets of a topological space X is
said to be a net for X if the following condition is satisfied :

For every point « of X and every open neighborhood U of z
there exists an element B of B with x e BC U.

A collection B of subsets of X is said to be a g-locally finite net
if it is a net and it is a union of a countable number of subcollections
which are locally finite in X. We shall say that X is a o-space if X
has a g-locally finite net (cf. [6]).

The notion of net was introduced and discussed by A. Arhangel’skii
[1]* and several results were obtained by him in [1], [2] and, also, by
E. Michael [4] in the case of countable nets.

The purpose of this paper is to study the images of o-spaces under
closed mappings? and to prove the following two theorems.

Theorem 1. Let f be a closed mapping of a normal T, g-space
X onto a topological space Y. Then the set {y|0f(y) is not countably
compact} is a o-discrete subset of Y ; that is, it ¢s a countable union of
discrete subsets of Y, where 0 f~*(y) denotes the boundary of f(y)
for each ye Y.

Theorem 2. Let f be a closed mapping of a normal T, o-space
X onto a topological space Y. Then Y is a g-space, too.

As regards Theorem 1 N. Lagnev [3] proved it in the case of
metric space. He proved also, in another paper [4], the following
theorem :

In order that a T, space X be a closed image of o metric space, it
is necessary and sufficient that X is a Fréchet-Urysohn space® with

1) This fact was pointed out to us by Professor A. Arhangel’skii. We express
our thanks to his advice.

2) All mappings in this paper are continuous.

8) X is a Fréchet-Urysohn space if, for every subset M of X and w,e M,
there exists a sequence {x,|n=1,2,.--} of points of M, converging to «.
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an almost refining sequence of hereditarily conservative coverings®
comprising a net for X.

By Theorem 2 we can slightly strengthen his result as below:

Corollary. In order that ¢ T, space X be a closed image of a
metric space, it is necessary and sufficient that X is @ Fréchet-Urysohn
space with an almost refining sequence of locally finite coverings com-
prising o net for X.

In § 2 we shall give the related observations which will be needed
for the next section and prove our theorems in § 3.

2. Preliminaries. Lemma 1. If X s a g-space, then X has a
o-locally finite net B= D%n satisfying the following three conditions :
n=1
(a) B, 1s a locally finite covering of X for n=1,2, ...,
(b) $%B,c®,., forn=12,...,

(c) 8B, is closed under finite intersections; that is, B, contains
any of intersections of finite members of B, for n=1,2, ...,

Proof. Let €= G@n be a given ¢-locally finite net for X. With-
n=1
out loss of generality we can assume X ¢ €,. Put®,= UG, and let B,
i=n
be the collection of all intersections of finite members of ®, for n
=1,2,.... Then it is easily seen that B= D%n is a o-locally finite
n=1
net for X satisfying all conditions.

Definition. Let = be a point of a topological space X and
{Sa(x)n=1,2, ...} a sequence of subsets of X with zeS,(x) for
n=1,2,.... Then we shall say that {S,(x)|n=1,2, ...} is a strict z-
sequence if any sequence {x,|n=1,2, ...} with , € S,(x) converges to

2. The notion of x-sequence was introduced by A. Arhangel’skii [2]

in the sense that any sequence {x,|n=1,2, --.} has an accumulation
point in X.

Proposition 1. Let X be a g-space. Then X has a o-locally finite
net B such that for each point xc X there exists a subcollection
{Sa(@) | n=1,2, ...} of B which is a strict x-sequence.

Proof. Let 8= G B, be a g-locally finite net for X satisfying all
n=1

conditions in Lemma 1. For an arbitrary point « ¢ X select a minimal

4) A system {F.|ac¥} of closed subsets of X is said to be hereditarily con-
servative if for any subset ¥’ of ¥ and any system {M,|ae®'} of closed subsets

of X, such that M,cF,, the set UA M, is closed in X. A sequence {%;|i=1,2, ...}
@€ A’

of closed coverings of X is said to be almost refining if for any point x, e X, any

system {Bi|i=1,2, ...}, such that B;e®; and «, e B;, is either hereditarily con-

servative, or else forms a net at x,.
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member S,(x) of B, containing x for n=1,2, .... The existence of
such S,(x) is assured by (c¢) of Lemma 1. Since B is a net for X, we
can see that {S,(x)|n=1,2, - - -} is a strict x-sequence. This completes
the proof.

Definition. Let x be a point of topological space X and B, a col-
lection of subsets of X with = € B for each B e ®B,. Then we shall say
that B, is a local net at x if, whenever x ¢ U with U open in X, then
xz e Bc U for some B ¢ 9B, (cf. [8]).

From the definition we can obtain the following, immediately.

Proposition 2. Let x be a point of a topological space X and
{B,|n=1,2, ---} a decreasing sequence of subsets of X which is a local
net at . Then {B,|n=1,2, ...} s a strict x-sequence.

Lemma 2. Let B’ and € be nets for T, spaces X and Y, respec-
tively, and f a closed mapping of X onto Y. Then the collection B
={B'Nf™XC)|B'e®W,CeC} is a net for X having the following
property :

If {k)f(Bai) is finite subset of Y for B,, -, B, € B, then for each
=1
ye F)f(B,i) there exist By, - - -, By, in B such that {y}= r%f(B,gi).
=1 i=1
Proof. It is easily seen that ¥ is a net for X. Now let us put

k
iglf(Bai)z{yl, tt ym} for Bal’ tt 0y Bak e %'

Since Y is a T,, space, there exists a disjoint collection {V,, - . -, V,} of
open subsets of Y such that y, eV, for ¢=1, ..., m. Since € is a net
for Y, there exist C,, ---,C, in € with y,¢ C;c U, for i=1, ..., m,.
Hence, if we put BU=f‘1(Ci)ﬂBaj for j=1,...,k;i=1, ..., m, then
each B;; is a member of B with y, e f(B;;). Accordingly, we have

jfljlf(Bw)=j(51[Czﬂf(Baj)]=Ci n [jﬁlf(B“J)]={yi} for i=1,...,m.

This completes the proof.

Proposition 3. Let f be a closed mapping of a topological space
X onto a topological space Y and § an arbitrary locally finite closed
covering of X. Then the set

Kz{yl{y}zzﬁf(F“i) for some n and for some F,, .-, F, e}

is discrete in X,
Proof.” For an arbitrary point y,¢ Y let
V=Y—U{/F)|F.eF, ve [F).
Then V is an open subset of Y containing y, by the assumption. Now
it is sufficient to show that V contains at most one point of K. If y

5) After we have proved this proposition, Professor J. Suzuki pointed out
that it may be proved more shortly. Here we do it according to his suggestion.
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is a point of VN K, we can see that y € K implies {y}= F\ J(F,) for
i=1
-, F,, €%, and that y e V implies y, e f(F,,)

for i=1, ...,n. Hence we have {y}= ﬁ f(F,) >y, and, consequently,
i=1

some 7 and for some F'

ay? "

¥y=1, This completes our proof.

3. Proof of Theorems. Proof of Theorem 1. Let B= G%n be
a g-locally finite net for X satisfying all conditions in Lemm;:ll and
C.,=f(B)={f(B)|BeB,} for n=1,2, .... Then it is easily seen that
C= DC&,, is a net Y. Furthermore, since X is a regular T, space, we

n=1
can assume that each B € B is closed in X.
Now, let us put

Y.={y|{y}= r{c]f(BM.) for some k and for some B,,, - -, B, € B,}
i=1
forn=1,2,.... TheneachY,is discrete in Y by Proposition 3. Ac-
cordingly, it is sufficient to show that for eachy e Y — G Y,, 0f Yy is
n=1

countably compact.
On the contrary, let us assume that 0 f~'(y,) is not countably com-

pact for some y,e Y — G Y,.. Then df-'(y,) contains an infinite and
n=1

discrete subset {z,|n=1,2, ...} of X. Since X is a normal T, space,
there exists a discrete collection {U,|n=1,2, ---} of open subsets of
X with z,e U, forn=1,2,.... For each n, let B,(x,) be the minimal
member in B; with x,e B(x,). Then it is easily seen that each
sequence {B(x,)|1=1,2, .-} is a decreasing, local net at z, and each
sequence {f(By(x,)|i=1,2, .-} is a decreasing, local net at y,, too.
Hence we can choose an I, with z, ¢ B, (,)c U, for each n and, with-
out loss of generality, we can assume that l,<l,<.-.. If we put C,

k
=N fB,,(%,)) for each k, then {C|k=1, 2, - - -} is a decreasing sequence
n=1

in Y, each of which contains ¢, and, in addition, it is a local net at ¥,.
Therefore, it is a strict y,-sequence by Proposition 2. Since y, is not

in G Y., each C, is an infinite subset of Y by Lemma 2. Accordingly,
n=1

we can select a point p, in B, (x,) for each n such that {f(p.)|n
=1,2, ...} is an infinite subset of Y with f(p,) € C, and f(p,)=xy, for
each n. Consequently, we obtain a sequence {f(p,)|n=1,2,---}in Y
converging to y,. On the other hand, since {U,|n=1,2, -} is dis-
crete, {p,|n=1, 2, ...} is also discrete in X and, since f is a closed
mapping, {f(p,)|n=1,2, ---} must be closed in Y. This is a contra-
diction. The proof is completed.

Proof of Theorem 2. Let Q be the aggregate of all points ¥ of
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Y with 0 (y)=¢. For each y in Q select a point 2(y) from ().
Let

P={x(y)|y e QQUIU{0f (W) |y 2 Q}].
Then P is closed in X. Since P has also a ¢-locally finite net (cf. [7])
and f|P is a closed mapping onto Y, it is sufficient to prove our
Theorem in the case of X=P. Therefore, without loss of generality,
we can assume that 0/~ (y)=f-'(y) for each y ¢ Y with 01 "(y)#¢.

Let 8= G B, be a g-locally finite net for X satisfying all conditions
n=1

in Lemma 1. In addition, since X is regular, each member of B is a
closed subset of X. Let
Y,.={y|*w)NB,=¢ for all but finite B, in B,}

for each n. Then each Y, is open in Y. Thatis, for an arbitrary y,¢ Y,
V=Y—-U{f(B,)]|B, e B, ¥ 2 f(B,)} is an open subset of Y containing
Y, since B, is a locally finite closed covering of X and f is a closed
mapping. Furthermore, if ¥ is in V, we have that f-'(y) N B,x¢ im-
plies f~'(y))NB,x¢ for B,cB,. This shows that V is contained in
Y, and, certainly, Y, is open in Y.

Since X is perfectly normal (cf. [7]), Y is so, too. Hence, for

each n we can put Y;:Y—-Yn=i61Gni with decreasing sequence

{Gni|t=1,2, ...} of open subsets of Y.

Now, let us put

Cri={f(B)—G,|B,e®B,} for i=1,2,...;n=1,2,...,

and show that each §,; is locally finite in Y. Let y be an arbitrary
point of Y. If y is in G,,, €,; is clearly locally finite at y. If ¥ is
not in G,;, ¥y must be in Y,. By the construction of Y, ¥ is contained
in only finite members of f68,)={f(B,)| B, B,}, in other words, the
last collection is point-finite at ¥ and, moreover, it is closure-preserv-
ing® in Y. Hence f(8B,) is locally finite at ¥ and, consequently, €,; is
locally finite at y.

Finally, let us put

Y’={y| f~(y) is not countably compact}

and show that

= G CuU{uhlye Y

is a o-locally finite net for Y. Since Y’ is g-discrete in Y by Theorem
1 and each G,; is locally finite in Y, it remains only to prove that € is
a net for Y. Let y be an arbitrary point of Y and U an arbitrary
open subset of Y containing y. Since it is clear for y in Y’, we can

6) A collection U is said to be closure-preserving if for any ScUU{V|V e B}
=n{V|VeB}. For any locally finite collection 11 in X f(11) is closure-preserving
in Y by the closedness of f.
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assume that f-%(y) is countably compact and, consequently, yis in Y,
for n=1,2,.... Since B is a net for X, there exist an n and B, in
B, with y e f(B,)CU. Since y isnot in Y’, we can choose k such that
ye G,,. Hence we have ye f(B)—G,.CU and f(B,)—G.:cCp.
This shows that € is a net for Y. This completes the proof.
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