102. Integration with Respect to the Generalized Measure. III

By Masahiro TAKAHASHI Department of Economics, Osaka City University (Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1968)

1. Introduction. Suppose $M, S, G, K, J, \mathcal{F}, \mathcal{G}, \mu$, and \mathcal{G} are defined as are in the example in the introduction in [1]. Then (S, \mathcal{G}, J) is an abstract integral structure [1] and \mathcal{J} is an abstract integral [1] with respect to this structure. For each $a \in K$, let \overline{a} be the function in \mathcal{F} such that $\overline{a}(x) = a$ for each $x \in M$. Then the operator "-" may be considered as an isomorphism of the topological additive group K into \mathcal{F} . Let us denote by \overline{K} the image of K by this isomorphism. The topological additive group K can be identified with the subgroup \overline{K} of \mathcal{F} by this isomorphism and it holds that $K \subset \mathcal{G}$.

Now let *i* be the map of $S \times K$ into *J* such that $i(X, \overline{a}) = \mu(X) \cdot a$ for each $X \in S$ and $a \in K$. Then this map *i* satisfies the following conditions:

1) i(X, a+b) = i(X, a) + i(X, b),

2) i(X+Y, a) = i(X, a) + i(Y, a) if XY = 0,

for each X, $Y \in S$, and $a, b \in K$. Further \mathcal{J} is an extension of i.

Conversely, when such a map i is given, how can we extend the map i to an abstract integral \mathcal{J} ? We shall give an answer to this question in the present part of the paper.

2. Construction of an abstract integral.

Assumption 1. Let (S, \mathcal{F}, J) be an abstract integral structure and K a subgroup of \mathcal{F} . Let i be a map of $S \times K$ into J satisfying the conditions:

1) i(X, a+b) = i(X, a) + i(X, b),

2) i(X+Y, a) = i(X, a) + i(Y, a) if XY = 0,

for each X, $Y \in S$, and $a, b \in K$. Denote by \mathcal{G}_0 the subgroup of \mathcal{F} generated by $SK = \{Xa \mid X \in S \text{ and } a \in K\}$ and by \mathcal{G} the \mathcal{F} -completion [1] of \mathcal{G}_0 .

Proposition 1. $\mathcal{G}_0 = \{\sum_{i=1}^n X_i a_i | X_i \in \mathcal{S} \text{ and } a_i \in K, i=1, 2, \dots, n\}$ = $\{\sum_{i=1}^n X_i a_i | X_i \in \mathcal{S} \text{ and } a_i \in K, i=1, 2, \dots, n, \text{ and } X_j X_k = 0 \ (j \neq k)\}.$

Proof. It suffices to show that, for any $g = \sum_{i=1}^{n} X_i a_i \in \mathcal{G}_0$, where $X_i \in \mathcal{S}$ and $a_i \in K$, $i=1, 2, \dots, n$, there exist $Y_j \in \mathcal{S}$ and $b_j \in K$,

 $j=1, 2, \cdots, m$, such that $Y_j Y_{j'}=0$ $(j \neq j')$ and $g = \sum_{j=1}^m Y_j b_j$. This will be proved by induction on n. Since we have nothing to prove for n=1, it suffices to show, under the assumption that our assertion is true for n=r-1, that for n=r there exist Y_j 's and b_j 's stated above. Our assumption implies that there exist $Z_k \in S$ and $c_k \in K$, $k=1, 2, \cdots, l$, such that $Z_k Z_{k'}=0$ $(k \neq k')$ and $\sum_{i=1}^{r-1} X_i a_i = \sum_{k=1}^{l} Z_k c_k$. Put $Y_j=X_r Z_j, \quad b_j=c_j+a_r, \quad j=1, 2, \cdots, l$, put $Y_{l+j}=Z_j+Y_j, \quad b_{l+j}=c_j,$ $j=1, 2, \cdots, l$, and put $Y_{2l+1}=X_r+X_r \sum_{k=1}^{l} Z_k, \quad b_{2l+1}=a_r$. Then it is easy to see that $Y_j \in S, \quad b_j \in K, \quad j=1, 2, \cdots, 2l+1, \quad Y_j Y_{j'}=0$ $(j \neq j')$ and that $\sum_{j=1}^{2l+1} Y_j b_j = \sum_{k=1}^{l} Z_k c_k + X_r a_r = \sum_{i=1}^{r} X_i a_i = g$. This completes the induction and thus Proposition 1 is proved.

Corollary. \mathcal{G}_0 is an S-invariant subgroup of \mathcal{F} .

The corollary assures us that the \mathcal{F} -completion \mathcal{G} of \mathcal{G}_0 is well defined. Further we have

Proposition 2. K is contained in \mathcal{G} .

The purpose of this part of the paper is to prove, under some assumptions, that the map i is uniquely extended to an abstract integral with respect to $(\mathcal{S}, \mathcal{G}, J)$.

First we shall show the uniqueness:

Proposition 3. If the map i is extended to an abstract integral with respect to (S, \mathcal{G}, J) , then such an abstract integral is uniquely determined.

Proof. For $X \in S$ and $g \in G$, we have $Xg \in G_0$ and hence there exist $X_i \in S$ and $a_i \in K$, i=1, 2, ..., n, such that $Xg = \sum_{i=1}^n X_i a_i$. Thus we have $\mathcal{J}(X, g) = \mathcal{J}(X^2, g) = \mathcal{J}(X, Xg) = \mathcal{J}(X, \sum_{i=1}^n X_i a_i) = \sum_{i=1}^n \mathcal{J}(X, X_i a_i)$ $= \sum_{i=1}^n \mathcal{J}(XX_i, a_i) = \sum_{i=1}^n i(XX_i, a_i)$, and this proves the proposition.

To prove the existence of an abstract integral which is an extension of i, let us begin with a lemma which is easily verified.

Lemma 1. If $X_i \in S$, i=1, 2, ..., m, $X_i X_{i'} = 0$ $(i \neq i')$ and if $Y_j \in S$, j=1, 2, ..., n, $Y_j Y_{j'} = 0$ $(j \neq j')$, then there exist $Z_{ij} \in S$, i=0, 1, ..., m; j=0, 1, ..., n $((i, j) \neq (0, 0))$, such that $Z_{ij} Z_{i'j} = 0$ $((i, j) \neq (i', j'))$, $X_i = \sum_{j=0}^n Z_{ij}$, i=1, 2, ..., m, and $Y_j = \sum_{i=0}^m Z_{ij}$, j=1, 2, ..., n. Moreover, these Z_{ij} 's are uniquely determined, respectively, as follows: $Z_{ij} = X_i Y_j$, $Z_{i0} = X_i + X_i \sum_{k=1}^n Y_k$ and $Z_{0j} = Y_j + Y_j \sum_{k=1}^m X_k$ for i=1, 2, ..., mand j=1, 2, ..., n.

M. TAKAHASHI

Corollary. For any g and h in \mathcal{G}_0 , there exist $X_i \in \mathcal{S}$, $a_i \in K$, and $b_i \in K$, $i=1, 2, \dots, n$, such that $X_j X_k = 0$ $(j \neq k)$, $g = \sum_{i=1}^n X_i a_i$, and $h = \sum_{i=1}^n X_i b_i$.

Under the following assumption, we shall show that the map i can be extended to an abstract integral with respect to $(\mathcal{S}, \mathcal{G}, J)$, except for the topological condition (in other words, if \mathcal{G} is a discrete group).

Assumption 2. If $X \in S$, $X \neq 0$, $a \in K$, $a \neq 0$, then $Xa \neq 0$. Lemma 2. If $X_i \in S$, $a_i \in K$, $i=1, 2, \dots, m$, $X_i X_{i'} = 0$ $(i \neq i')$, if $Y_j \in S$, $b_j \in K$, $j=1, 2, \dots, n$, $Y_j Y_{j'} = 0$ $(j \neq j')$, and if $\sum_{i=1}^m X_i a_i = \sum_{j=1}^n Y_j b_j$, then, for each *i* and *j*, it holds that

- 1) $a_i = b_j \text{ if } X_i Y_j \neq 0,$
- 2) $a_i = 0$ if $X_i + X_i \sum_{k=1}^n Y_k \neq 0$,
- 3) $b_j = 0$ if $Y_j + Y_j \sum_{k=1}^m X_k \neq 0$.

Proof. Since $0 = X_i Y_j 0 = X_i Y_j (\sum_{r=1}^m X_r a_r - \sum_{s=1}^n Y_s b_s) = X_i Y_j a_i - X_i Y_j b_j$ = $X_i Y_j (a_i - b_j)$, Assumption 2 implies 1). 2) follows from $0 = (X_i + X_i \sum_{k=1}^n Y_k) (\sum_{r=1}^m X_r a_r - \sum_{s=1}^n Y_s b_s) = (X_i + X_i \sum_{k=1}^n Y_k) a_i - \sum_{s=1}^m (X_i Y_s + X_i Y_s) b_s$ = $(X_i + X_i \sum_{k=1}^n Y_k) a_i$ and 3) is proved in an analogous way.

Lemma 3. There exists a unique homomorphism I of \mathcal{G}_{0} into J such that

I(Xa) = i(X, a) for each $X \in S$ and $a \in K$.

Proof. For any $g \in \mathcal{G}_0$ there exist $X_i \in \mathcal{S}$ and $a_i \in K$, $i=1, 2, \cdots$ \cdots, m , such that $X_i X_{i'} = 0(i \neq i')$ and $g = \sum_{i=1}^m X_i a_i$. The uniqueness of I follows from $I(g) = I(\sum_{i=1}^m X_i a_i) = \sum_{i=1}^m I(X_i a_i) = \sum_{i=1}^m i(X_i, a_i)$ and the existence is proved as follows. For another expression of $g: g = \sum_{j=1}^n Y_j b_j$, where $Y_j \in \mathcal{S}, b_j \in K, j=1, 2, \cdots, n$, and $Y_j Y_{j'} = 0$ $(j \neq j')$, we show that $\sum_{i=1}^m i(X_i, a_i) = \sum_{j=1}^n i(Y_j, b_j)$. For these X_i 's and Y_j 's, there exist $Z_{ij} \in \mathcal{S}$, for $i=0, 1, \cdots, m$ and $j=0, 1, \cdots, n$ $((i, j) \neq (0, 0))$, satisfying the conditions in Lemma 1. Lemma 2 implies that $a_i = b_j$ for $i \ge 1$ and $j \ge 1$ such that $Z_{ij} \neq 0$, that $a_i = 0$ for $i \ge 1$ such that $Z_{i0} \neq 0$ and that $b_j = 0$ for $j \ge 1$ such that $Z_{0j} \neq 0$. Thus we have $\sum_{i=1}^m i(X_i, a_i) = \sum_{i=1}^m i(\sum_{j=0}^n Z_{ij}, a_i) = \sum_{i=1}^n \sum_{j=0}^n i(Z_{ij}, a_i) = \sum_{i=1}^m \sum_{j=1}^n i(Z_{ij}, a_i) = \sum_{j=1}^n \sum_{i=1}^n i(Z_{ij}, b_j) = \sum_{j=1}^n i(Y_j, b_j)$. Hence, for $g = \sum_{i=1}^{m} X_i a_i$, we can define I(g) as $\sum_{i=1}^{m} i(X_i, a_i)$ unambiguously and thus a map I of \mathcal{G}_0 into J is defined. That the map I is a homomorphism is shown as follows. For g and h in \mathcal{G}_0 , Corollary to Lemma 1 implies that there exist $X_i \in \mathcal{S}$, $a_i \in K$, and $b_i \in K$, $i=1, 2, \cdots$ \cdots , n, such that $X_j X_k = 0$ $(j \neq k)$, $g = \sum_{i=1}^{n} X_i a_i$ and $h = \sum_{i=1}^{n} X_i b_i$. Then we have $I(g+h) = I(\sum_{i=1}^{n} X_i a_i + \sum_{i=1}^{n} X_i b_i) = I(\sum_{i=1}^{n} X_i (a_i + b_i)) = \sum_{i=1}^{n} i(X_i, a_i + b_i)$ $= \sum_{i=1}^{n} i(X_i, a_i) + \sum_{i=1}^{n} i(X_i, b_i) = I(g) + I(h)$. For $X \in \mathcal{S}$ and $a \in K$, that I(Xa) = i(X, a) is obvious from the definition of I and this completes the proof of Lemma 3.

For an abstract integral structure (S, \mathcal{F}, J) , a map \mathcal{J} of $S \times \mathcal{F}$ into J is called a *discrete abstract integral* with respect to the structure if it satisfies the conditions:

(*') The map $\mathcal{J}=\mathcal{J}(X, f)$ is a homomorphism of \mathcal{F} into J with respect to f for any fixed X.

(**) $\mathcal{J}(XY, f) = \mathcal{J}(X, Yf)$ for each $X, Y \in S$, and $f \in \mathcal{F}$.

Any abstract integral is a discrete abstract integral and, conversely, a discrete abstract integral \mathcal{J} is an abstract integral if and only if it satisfies the condition :

(*'') The map $\mathcal{J}=\mathcal{J}(X, f)$ is continuous with respect to f for any fixed X.

Now we can prove the following

Proposition 4. The map i is uniquely extended to a discrete abstract integral \mathcal{J} with respect to $(\mathcal{S}, \mathcal{G}, \mathcal{J})$.

Proof. Define a map \mathcal{J} of $\mathcal{S} \times \mathcal{G}$ into J by $\mathcal{J}(X, g) = I(Xg)$, for each $X \in \mathcal{S}$ and $g \in \mathcal{G}$, where I is the map in Lemma 3. Then it is easy to verify that the map \mathcal{J} is a discrete abstract integral with respect to $(\mathcal{S}, \mathcal{G}, J)$ which is an extension of i. The uniqueness of such an extension follows from Proposition 3 when we consider \mathcal{F} to be a discrete group and this completes the proof.

We see that a necessary and sufficient condition for the map i to be extended to an abstract integral with respect to $(\mathcal{S}, \mathcal{G}, J)$ is that the discrete abstract integral \mathcal{S} in Proposition 4 satisfy Condition (*'') above.

It will be seen that a sufficient condition for (*'') is that the following Assumptions 3 and 4 be satisfied.

Assumption 3. For any neighbourhood P of the unit element of \mathcal{F} , there exists a neighbourhood Q of the unit element of \mathcal{F} such that

 $f \in Q$, $a \in K$, $X \in S$, $X \neq 0$, and X(f-a)=0 imply $a \in P$.

Assumption 4. For any X in S and for any neighbourhood V of

M. TAKAHASHI

the unit element of J, there exists a neighbourhood P of the unit element of \mathcal{F} such that

 $a_i \in P \cap K, X_i \in S, i=1, 2, \dots, n, and X_j X_k = 0 \ (j \neq k)$ imply $\sum_{i=1}^{n} i(XX_i, a_i) \in V.$

Theorem 1. Under Assumptions 1, 2, 3, and 4, the map i is uniquely extended to an abstract integral \mathcal{I} with respect to the abstract integral structure $(\mathcal{S}, \mathcal{Q}, \mathcal{J})$.

Proof. The uniqueness has been proved in Proposition 3. Let \mathcal{J} be the discrete abstract integral in Proposition 4. Then we need only prove that the map \mathcal{J} satisfies Condition (*") above. Suppose $X \in S$ and let V be any neighbourhood of the unit element of J. Then there exists a neighbourhood P of the unit element of \mathcal{F} satisfying the condition in Assumption 4. For this neighbourhood P, there exists a neighbourhood Q of the unit element of \mathcal{F} satisfying the condition in Assumption 3. Now, for given $g \in Q \cap \mathcal{G}$, we assert that $\mathcal{J}(X, g) \in V$, which proves the theorem. Since $Xg \in \mathcal{G}_0$, there exist $X_i \in S$ and $a_i \in K$, $i=1, 2, \dots, n$, such that $X_j X_k = 0$ $(j \neq k)$ and $Xg = \sum_{i=1}^{n} X_i a_i$. We may assume that $XX_i \neq 0$ for $1 \leq i \leq m$ and $XX_i = 0$ for $m < i \leq n$, where m is an integer such that $0 \leq m \leq n$. Then, for each *i*, it holds that $XX_i(g-a_i) = XX_iXg - XX_ia_i = XX_i\sum_{j=1}^n X_ja_j - XX_ia_j$ $=XX_ia_i-XX_ia_i=0$, which, by the definition of Q, implies that $a_i \in P$ for $1 \leq i \leq m$. Thus, by the definition of *P*, we have $\sum_{i=1}^{m} i(XX_i, a_i) \in V$. Hence $\mathcal{J}(X, g) = \mathcal{J}(X, Xg) = \mathcal{J}(X, \sum_{i=1}^{n} X_i a_i) = \sum_{i=1}^{n} \mathcal{J}(X, X_i a_i) = \sum_{i=1}^{n} \mathcal{J}(XX_i, a_i)$ $=\sum_{i=1}^{n} i(XX_i, a_i) = \sum_{i=1}^{m} i(XX_i, a_i) \in V.$ This completes the proof.

References

- M. Takahashi: Integration with respect to the generalized measure. I. Proc. Japan Acad., 43, 178-183 (1967).
- [2] —: Integration with respect to the generalized measure. II. Proc. Japan Acad., 43, 184-185 (1967).