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147. General Theory of Mappings

By Kiyoshi ISEKI
(Comm. by Kinjird KUNUGI, M. J. A., Sept. 12, 1968)

In his paper [1], J. R. Biichi considered the notion of functions
on a set. Some of his results are true for the both set theories in the
senses of G. Cantor and S. Le$niewski. In this paper, we concern
with a theory of functions on a set in the sense of G. Cantor.

Let E, E’ be two given sets, f a function from 2% to 2%, where
2%, 2" denote the sets of all subsets of E, E’ respectively.

J. R. Biichi [1] introduced a notion of a pair of functions (f, f)
as follows: f and f are a pair of functions, if, for any function f,
there is a function f from 2% to 2% such that A’N f(4)=0 implies
FANYNA=0, where A 2%, A’ 2%, J.R. Biichi obtained some im-
portant properties on (f, f) (see [1]). Among these properties, an
important result is the representation of f: f(AN=N{X|f(E—-X)
cE -4

If (f, f) is a pair of functions, then for {4,}, A,CFE, we have
f(UA)=U (A, (see [1], p. 164). Hence f is a multiform mapping

in the sense of Dubreil ([4]-[7]).

Further we have f(f(4))DA. To prove it, take an element z of
A. Suppose that f(f(4)Nx=¢, then f(A)N f(x)=0, which contra-
diets to f(x)c f(A).

For the empty set ¢ and E, we have f(f(¢)=¢, f(f(E)=E.
Therefore the family I of all subsets A of E such that f(f(A))=A4 is
not empty.

Let A=yUA,, A, e M, then we

f(f(A))=f(f(UAa))=f(l;Jf(Aa))= lan(f(Aa)): UA,=A.
Let B=NA,, A, e, then
f(f(B))=f(f(ﬂAa))Cf(Qf(Aa))c Qf(f(Aa))= NA,=B.

On the other hand, Bc f(f(B)) for any subset B of E.
For any subset A e M, (F—A)N F(f(A)=(FE—-A)NA=¢. Hence
JE-A)NfA)=0¢.
This implies f(f(E—A))NA=¢, and we have f(f(E—A)CE—A.
Therefore, we have the following
Theorem 1. The family MM of all subsets A such that f(f(A))

1) In this Note, we shall assume that f(x)#0 for every xc E.
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=A s a set-field.

Following P. Dubreil [6], a function f is called semi-uniform, if
for any elements x, y of E, f(x)N f(y)+ ¢ implies f(x)=f(y).

Theorem 2. The function f for a semi-uniform function f is
semi-uniform.

Proof. Let f(z)N f(y)+#¢ for two elements «/, ¥’ of E’, then
there is an element u e f(x), f(¥). Hence #/, ¥’ ¢ f(u). Take any
element z of f(x'), then we have 2’ f(z). Hence f(u)N f(2)x¢.
Since f is semi-uniform, f(u)=f(z). Therefore ¥’ ¢ f(z), and we have
ze f(y). Hence f(x)c f(y). Similarly f(y)c f(@).

We denote F(f(A4)), F(f(F(f(A))), --- for a pair of functions

f, 1) by (FNHA), (FNH*A), ---. For any subset A of E, we define
h(A) by
() {ylye (fHMA) for some n}.

Then & is a mapping from 27 to 27,

For any element z, suppose that f(x)x¢@, hence f(x)N f(x)=x¢.
Therefore x e (ff)(x). By repeating the same argument, we have
2 € (ff)*(x) and consequently « € h(x). Hence for any subset A of E,
AcCh(A), i.e., h is a reflexive relation on E (see [1], p. 163).

For any subsets A, B, suppose that h(A)N Bx¢@. Then there is
an element x such that xc h(A)NB. Hence for some n and ye A,
z e (F)"(y). Therefore y e (ff)"(x). This means ANA(B)x¢. Hence
we have h=h, i.e., h is a symmetric relation (see [1], p. 163).

By the definition of k(x), we have h(h(A))cCh(A), i.e., k is a tran-
sitive relation (see [1], p. 163). Therefore . is an equivalence relation
on K.

Theorem 3. The function h defined by (1) gives an equivalence
relation on E, where f(x)x0 for every xec E.

As already mentioned, a function f : 27 -2% gatisfying 1) Ac f(4),
2) f(A)=f(A), and 3) f(f(A)c f(A) for every subset A of E is called
an equivalence relation on E.

Let f be an equivalence relation on E. If f(x)N f(y)=¢, then
we have N f(f()x¢, ie., ze f(f(y). By 3), z¢ f(y). Hence
f@cf(Fw)Hc f(y). Similarly we have f(y)c f(x). This shows f(x)
= f(y). Therefore we have the following

Theorem 4. An equivalence relation is semi-uniform.

Let f, g be two equivalence relation of a set E. A function
g * f:28 2% ig defined by

(g% HA)={y|ye(9f)"(A) for some n=0,1,2,..-}.
For g x f, we have Ac (g * /)(A), and (g * /)((g * N(A) (g * )(A) by
the definition g« f. Let ye(9/)"(4). By 1), Acg(4). Hence f(4)
C f(g(A)). Consequently we have (9/)"(4A)cg(f9)"(4). Therefore
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ye g(fg)"(A), and then
ye fc fg(f P AN=>9"(4).
This shows that g = f is symmetric.

Theorem 5. If f, g are two equivalence relation, then g x f
(=1 *g) is an equivalence relation.

Let f, g be two equivalence relations on a set E. If, for any
three elements a, b, and z, a ¢ f(x) and b € g(x) imply a € g(), b € f(y)
for some ye E, f, and ¢ is called to be associable (This notion and
Theorem 6 are essentially due to [3]).

Theorem 6. If h is associable to f and g, then h is assoctable to
gxf.

Proof. Let ac h(x) and be (g f)(x), then b ¢ (g9f)*(x) for some
n. Hence f(x)Ng(f9)"*(b)x¢. Then there is an element ¢, e f(x)
Ng(fe"(b). ¢, e f(x), ae h(x) imply that there is an element d such
that

¢, € h(d), a e f(d).
¢, € 9(f9)"(b) implies g(e)N(f9)" ()= ¢, and we find an element c,
such that
cegle), ce(fe ().
By deh(e), c,egle), there is an element e, such that de g(e),
¢, € h(e). Therefore, by a e f(d) and d e g(e,), we have

1) ae fg(e).

On the other hand, by ¢, e (fg)""%b) we have b e (g9f)**(c,). Hence,
by ¢, € h(ey),

2) be(gf)(h(e)).

By repeating this technique, we find some element e, such that
ae(fg)*(e,) and b e h(e,). This shows ae (gx* f)(y) and be h(y) for
some y.

A modern algebraic theory of equivalence relations is found in
[2], [8]. These results can be treated by our function method.

For two functions f, g:27—-2F, we define f<g by f(A)cg(4)
for every subset A of E. (fNg)A4) is defined by f(4)Ng(A), and
(fUg)(4) by f(A)Ug(4).

Let (f, 1), (g, 9) be two pairs of functions. Suppose that

A'N(f(A)Ug(A)=0,
then we have

AN f(A)=0, A'Ng(4)=0

and f(A)YNA=g(A")NA=0. Therefore

(f(AHYUg(AN)NA=0,
which means that (fUg, fUg) is a pair of functions. Hence we have
FUg=rUg.

Next we shall prove fNg<fNg. Let ze(fNg)(4), then
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(fNg)ax)yNA=0. There is an element ¥ such that ye (fNg)(x)NA4,
ie,ye(fNg)x), ye A. Hence y ¢ f(x), g(x) and then x e F(y), g(v).
Therefore x ¢ f(4) N g(A).

We prove the following Dedekind relation (see J. Riquet [8]).

Let (f, /), (g, 9), and (h, k) be pairs of functions: 2227, 2F_,2¢
and 27—2¢ respectively. Then we have

3) ((aNHNm@)c(@N RN N(GR) ().
Let y e (9/)NR)(2), then ye g(f(2)), y e Mx). Hence gl)N f(2)#¢,
and g(y)cg(k(x)). From y < h(x), we have z ¢ h(y), and f(x)C f(h(y)).
Therefore

F@Ngr@)Ngy) N fRW) =% P.
Hence
(FO @)@ N @GN TRYW)=6.

This implies

¥ € (@N TR N @RN@ @ N RN N (Gh)@)
=(g NN N(gh)().

Therefore we have the Dedekind relation 3).

References

[1]1 J.R. Biichi: Die Boole’sche Partialordnung und die Paarung von Gefiigen.
Portugallae Math., 7, 119-180 (1948).

[2] A. Chatelet: Algebre des relations de congruence. Annales scient. Ecole
normal, 64, 339-368 (1947).

[8] P. Dubreil et M. L. Dubreil-Jacotin: Theorie algébrique des relations d’
équivalence. Jour. de Math., 18, 63-95 (1939).

[4] M. L. Dubreil-Jacotin: Quelques propriétés des applications multiformes.
C. R. de Paris, 230, 806-808 (1950).

[51] ——: Applications multiformes et relations d’équivalences. C. R. de Paris,
203, 906-908 (1950).

[61 P. Dubreil: Relations binaires et applications. C. R. de Paris, 1028-1030
(1950).

[7T] ——: Comportment des relations binaires dans une application multiforme.
C. R. de Paris, 230, 1242-1244 (1950).

[8] J. Riquet: Relations binaires, fermetures, correspondences de Galois. Bull.
Soc. Math. de France, 76, 114-153 (1948).



