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147. General Theory of Mappings

By Kiyoshi ISK
(Comm. by Kinjir KUNUGI, M.J.A., Sept. 12, 1968)

In his paper [1], J. R. Biichi considered the notion of functions
on a set. Some of his results are true for the both set theories in the
senses of G. Cantor and S. Leniewski. In this paper, we concern
with a theory of functions on a set in the sense of G. Cantor.

Let E, E’ be two given sets, f a function from 2 to 2’, where
2s, 2’ denote the sets of all subsets of E, E’ respectively.

J. R. Biichi [1] introduced a notion of a pair of functions (f, f)
as follows" f and f are a pair of functions, if, for any function f,
there is a function f from 2’ to 2 such that A’f(A)=O implies
f(A’)(A--O, where A e 2, A’e 2s’. J.R. Biichi obtained some im-
portant properties on (f, f) (see [1]). Among these properties, an
important result is the representation of f" f(A’)- {X If(E-X)

If (f, f) is a pair of functions, then for {A}, AcE, we have
f()A)= f(A) (see [1], p. 164). Hence f is a multiform mapping

in the sense of Dubreil ([4]-[7]).
Further we have f(f(A))A. To prove it, take an element x of

A. Suppose that f(f(A)) x=, then f(A) f(x)=O, which contra-
dicts to f(x)cf(A).

For the empty set and E, we have f(f())-, f(f(E))-E.
Therefore the family of all subsets A of E such that f(f(A))=A is
not empty.

Let A-- U A, A e , then we

f(f(A)) f(f( U A)) f( U f(A)) U f(f(A)) )A-A.

Let B ( A, A e , then

f(f(B)) f(f( A)) f( f(A))c f(f(A)) A B.

On the other hand, Bcf(f(B)) for any subset B of E.
For any subset A e , (E-A) f(f(A)) (E-A) A . Hence

f(E-A) f(A) .
This implies f(f(E-A))A-, and we have f(f(E--A))cE--A.
Therefore, we have the following

Theorem 1. The family of all sbsets A such that f(f(A))

1) In this Note, we shall assume that f(x)0 for every x e E.
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A is a set-field.
Following P. Dubreil [6], a function f is called semi-uniform, if

for any elements x, y of E, f(x) f(y) implies f(x)-- f(y).
Theorem 2. The function f for a semi-uniform function f is

semi-uniform.
Proof. Let f(x’) f(y’) for two elements x’, y’ of E’, then

there is an element u e f(x’), f(y’). Hence x’, y’e f(u). Take any
element z of f(x’), then we have x’e f(z). Hence f(u)f(z):.
Since f is semi-uniform, f(u)-f(z). Therefore y’ e f(z), and we have
z e f(y’). Hence f(x’) f(y’). Similarly f(y’) f(x’).

We denote f(f(A)), f(f(f(f(A)))),.., for a pair of functions
(f, f) by (ff)(A), (ff)(A), .... For any subset A of E, we define
h(A) by
( 1 ) {YlY e (ff)n(A) for some n}.
Then h is a mapping from 2 to 2.

For any element x, suppose that f(x)ev, hence f(x)f(x)#.
Therefore x e (ff)(x). By repeating the same argument, we have

tx e (ff) (x) and consequently x e h(x). Hence for any subset A of E,
Ah(A), i.e., h is a reflexive relation on E (see [1], p. 163).

For any subsets A, B, suppose that h(A) B#-. Then there is
an element x such that x e h(A)B. Hence for some n and y e A,
x e (ff) (y). Therefore y e (ff) (x) This means A h(B)4= gf Hence
we have h=, i.e., h is a symmetric relation (see [1], p. 163).

By the definition of h(x), we have h(h(A))h(A), i.e., h is a tran-
sitive relation (see [1], p. 163). Therefore h is an equivalence relation
onE.

Theorem :. The function h defined by (1) gives an equivalence
relation on E, where f(x)#-O for every x e E.

As already mentioned, a function f" 2-2 satisfying 1) A f(A),
2) f(A)--f(A), and 3) f(f(A))f(A) for every subset A of E is called
an equivalence relation on ’E.

Let f be an equivalence relation on E. If f(x)f(y)#, then
we have xf(f(y))#, i.e., xef(f(y)). By 3), xef(y). Hence
f(x)cf(f(y))cf(y). Similarly we have f(y)cf(x). This shows f(x)
--f(y). Therefore we have the following

Theorem 4. An equivalence relation is semi-uniform.
Let f, g be two equivalence relation of a set E. A function

g f" 2--2 is defined by
(g f)(A)- {YlY e (gf)(A) for some n-0, 1, 2, }.

For g f, we have A (g f)(A), and (g f)((g f)(A)) (g f)(A) by
the definition g f. Let y e (gf)n(A). By 1), A g(A). Hence f(A)
cf(g(A)). Consequently we have (gf)n(A)g(fg)n(A). Therefore
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y e g(fg)n(A), and then
y e f(y)f(g(fg)(A))=(fg)/(A).

This shows that g. f is symmetric.
Theorem 5. If f, g are two equivalence relation, then g.f

(=f, g) is an equivalence relation.
Let f, g be two equivalence relations on a set E. If, for any

three elements a, b, and x, a e f(x) and b e g(x) imply a e g(y), b f(y)
for some y e E, f, and g is called to be associable (This notion and
Theorem 6 are essentially due to [3]).

Theorem 5. If h is associable to f and g, then h is associable to
g.f.

Proof. Let a e h(x) and b e (g f)(x), then b (gf)(x) for some
n. Hence f(x)g(fg)-(b)#. Then there is an element c f(x)

g(fg)n-l(b), cl e f(x), a e h(x) imply that there is an element d such
that

cl e h(d), a e f(d).
c e g(fg)-(b) implies g(c) (fg)n-(b)-, and we find an element c
such that

c. e g(c), c e (fg)n-(b).
By de h(c), ce g(c), there is an element e such that de g(e),

c e h(e). Therefore, by a e f(d) and d e g(e), we have
1) a e f(g(e)).

On the other hand, by c e (fg)-(b) we have b e (gf)n-(c). Hence,
by c. e h(el),

2) b e (gf)-(h(e)).
By repeating this technique, we find some element e such that
a e (fg)(en) and b e h(e). This shows a e (g f)(y) and b h(y) for
some y.

A modern algebraic theory of equivalence relations is found in
[2], [3]. These results can be treated by our function method.

For two functions f, g’22y, we define f<g by f(A)g(A)
ior every subset A of E. (fg)(A) is defined by f(A)g(A), and
(f U g)(A) by f(A) U g(A).

Let (f, f), (g, y) be two pairs of unctions. Suppose that
A’(f(A)Ug(A))=O,

then we have
A’ f(A)=O, A’ ( g(A)-O

and f(A’) ( A y(A’) ( A =0. Therefore
(f(A’) U (A’)) A O,

whieh means that (f (3 g, f U ) is a pair of $unetions. Hence we have

fUg--fUg.
Next we shall prove fg<f. Let e(fg)(A), then
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(f VI g)(x) VIA =0. There is an element y such that y (f g)(x) A,
i.e., y e (f g)(x), y e A. Hence y e f(x), g(x) and then x e f(y), ((y).
Therefore x e f(A) (A).

We prove the ollowing Dedekind relation (see J. Riquet [8]).
Let (f, f), (g, ), and (h, ) be pairs of unctions 22, 2--2a

and 2--.2 respectively. Then we have
3) ((gf) VI h)(x) (g gl (hf))(f (h))(x).

Let y e ((gf) h)(x), then y e g(f(x)), y e h(x). Hence (y) f(x)=/=,
and ((y)c((h(x)). From y e h(x), we have x e (y), and f(x)cf((y)).
Therefore

f(x) (h(x)) (y) f(h(y)):.
Hence

(f (yh))(x) ( (fh))(y) 0.
This implies

y (( (fh))(f (yh))(x) ((3 (f))(f (h))(x)
(g 1 (hf))(f ((h))(x).

Therefore we have the Dedekind relation 3).
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