132. Real-valued Measurable Cardinals and $\sum_{1}^{1}-$ Transcendency of Cardinals*)

By Kanji Namba
Department of Mathematics, Tokyo University of Education
(Comm. by Zyoiti Suetuna, m. J. A., Sept. 12, 1968)

In this paper, we shall prove \sum_{1}^{1} transcendency of cardinals ${ }^{1)}$ under the assumption of existence of real-valued measurable cardinal, ${ }^{2)}$ applying the results and difinitions used in [2] and [3].

Let I be an ideal over a set A. The equivalence relation between two subsets B and C of A is defined by

$$
B \sim C \equiv B-C-B \in I \wedge B-C \in I .
$$

By $[B]$ we donote the equivalence class including B. And $[A]$ and $[\phi]$ are sometimes abbreviated as $\mathbf{1}$ and $\mathbf{0}$ respectively. The relation $[B]>[C]$ is defined by $[B]>[C] \equiv B C \notin I \wedge C-B \in I$.

An ideal I is called a-complete if

$$
\left[A_{\nu}\right]=0 \text { for all } \nu<a \text { implies }\left[\bigcup_{\nu<a} A_{\nu}\right]=0 .
$$

The character of I is defined to be the smallest ordinal a such that I is not a-complete, and it is denoted by $\operatorname{ch}(I)$.

An ideal I is called a-saturated if

$$
\left[A_{\nu}\right]>\mathbf{0},\left[A_{\nu} \cap A_{\mu}\right]=\mathbf{0} \text { for all } \nu \neq \mu, \text { and } \nu, \mu<b \text { imply } b<a
$$

The saturation number of I is defined to be the smallest ordinal a such that I is a-saturated, and it is denoted by sat (I).

Let I be an ideal over \boldsymbol{K}_{r}. And let \mathfrak{A} be a set of functions in $\mathrm{On}^{\kappa_{r}}$ (On is the class of all ordinal numbers). A function f is said to be incompressible (cf. [3]) with respect to \mathfrak{U} if the following conditions are satisfied:
(1) $[\{\nu: g(\nu)<f(\nu)\}]=1$ for every $g \in \mathfrak{R}$,
(2) if $[\{\nu: h(\nu)<f(\nu)\}]>0$, then, $[\{\nu: h(\nu) \leq g(\nu)\}]>0$ for some $g \in \mathfrak{A}$.

The following lemma is proved easily. (cf. [3]).
Lemma 1. Let I be an ideal over $\boldsymbol{K}_{\text {. }}$ such that $\operatorname{sat}(I) \leq \operatorname{ch}(I)$ $\left(\boldsymbol{K}_{0}<\operatorname{ch}(I)\right)$. And let \mathfrak{A} be a set of functions in $\mathrm{On}^{\aleph_{2}}$. Then there is an incompressible function with respect to \mathfrak{H}.

Now we shall define a function $a^{*} \in O n^{\aleph_{\tau}}$ by the induction on a as one of incompressible functions with respect to $\left\{b^{*}: b<a\right\}$. And $a^{*}(\nu)$
*) This work is partially supported by Matsunaga Science Foundation.

1) Cf. [2], [5].
2) Cf. [3], [6].
is abbreviated as $(a)_{v} .{ }^{3)}$
Lemma 2. Let \boldsymbol{K}_{\circ} be the smallest cardinal number such that $\max \left(\boldsymbol{K}_{1}, \operatorname{sat}(I)\right) \leq \boldsymbol{K}_{\sigma+1}$. Then there is a set of functions \mathfrak{N} with the following properties:
(1) $\overline{\overline{\mathfrak{V}}} \leq \boldsymbol{K}_{a}$,
(2) \mathfrak{Y} is arithmetically closed basis (cf. [1], [2]),
(3) if $f \in \mathfrak{Q}$, then

$$
\left[\bigcup_{g \in \mathfrak{R}}\left\{\nu: f\left(\left(a_{1}\right)_{\nu}, \cdots,\left(a_{n}\right)_{\nu}\right)=\left(g\left(a_{1}, \cdots, a_{n}\right)\right)_{\nu}\right\}\right]=\mathbf{1}
$$

Proof. Let f be a function. And we consider the set

$$
B_{a_{1}} \cdots{ }_{a_{n}}=\left\{d:\left[\left\{\nu: f\left(\left(a_{1}\right)_{\nu}, \cdots,\left(a_{n}\right)_{\nu}\right)=(d)_{\nu}\right\}\right]>\mathbf{0}\right\} .
$$

Then we have
(1) $\overline{\overline{\boldsymbol{B}_{a_{1}} \cdots a_{n}}} \leq \boldsymbol{K}_{a}$,
(2) $\left[\bigcup_{d \in B_{a_{1} \cdots} \cdots a_{n}}\left\{\nu: f\left(\left(a_{1}\right)_{\nu}, \cdots,\left(a_{n}\right)_{\nu}\right)=(d)_{\nu}\right\}\right]=1$.

Now we put $B_{a_{1}} \cdots{ }_{a_{n}}=\left\{d_{\rho}: \rho<\boldsymbol{S}_{\sigma}\right\}$. And the functions f_{ρ} is introduced by

$$
f_{\rho}\left(a_{1}, \cdots, a_{n}\right)=d_{\rho}
$$

Then we have

$$
\left[\bigcup_{\rho<\mathbb{N}_{\sigma}}\left\{\nu: f\left(\left(a_{1}\right)_{\nu}, \cdots,\left(a_{a}\right)_{\nu}\right)=\left(f_{\rho}\left(a_{1}, \cdots, a_{a}\right)\right)_{\nu}\right\}\right]=\mathbf{1} .
$$

The required set \mathfrak{A} is easily obtained from this.
Lemma 3. Let I be a proper ideal on $\boldsymbol{\aleph}_{\text {. }}$ with the property $\operatorname{sat}(I)<\operatorname{ch}(I)=\boldsymbol{K}_{\mathbf{r}}\left(>\boldsymbol{K}_{0}\right)$. And let the following conditions be satisfied:
(1) $\overline{\bar{B}}, \overline{\overline{\mathfrak{V}}}<\boldsymbol{K}_{r}, \boldsymbol{K}_{\tau} \in B$,
(2) \mathfrak{V} is arithmetically closed,
(3) $\left[\bigcup_{g \in \mathscr{R}}\left\{\nu: f\left(\left(a_{1}\right)_{\nu}, \cdots,\left(a_{n}\right)_{\nu}\right)=\left(g\left(a_{1}, \cdots, a_{n}\right)\right)_{\nu}\right\}\right]=\mathbf{1} \quad$ for $f \in \mathfrak{A}$,
(4) B is \mathfrak{A}-closed,
(5) $a \in B$ and $\left[\left\{\nu:(d)_{\nu}=a\right\}\right]>0$ then $d \in B$.

Then there is an ordinal a_{0} such that
(1) $\left[B \cup\left\{a_{0}\right\}\right]_{\mathscr{Q}} \cap a_{0} \subset B$,
(2) $\sup \left(B \cap \boldsymbol{\aleph}_{r}\right) \leq a_{0}<\boldsymbol{\zeta}_{r}, a_{0} \notin B$,
(3) if $c \in\left[B \cup\left\{a_{0}\right\}\right]_{\mathfrak{R}}$ and $\left[\left\{\nu:(d)_{\nu}=c\right\}\right]>0$ then $d \in\left[B \cup\left\{a_{0}\right\}\right]_{\mathfrak{R}}$.

Proof. We shall first define the sets as follows

$$
\begin{gathered}
C_{a}=\bigcup_{\left.\left[\nu:(a)_{\nu}=a\right)\right]>0}\left\{\nu:(d)_{\nu}=a\right\}, \\
A_{f a \cdots a}=\bigcup_{g \in \mathfrak{A}}\left\{\nu: f\left(\left(a_{1}\right)_{\nu}, \cdots,\left(a_{n}\right)_{\nu}\right)=\left(g\left(a_{1}, \cdots, a_{n}\right)\right)_{\nu}\right\} .
\end{gathered}
$$

And the set D is defined by

$$
D=\left\{\nu:\left(\boldsymbol{K}_{t}\right)_{\nu}<\boldsymbol{K}_{t}\right\} \cap \bigcap_{\substack{a<b \\
a, b \in B}}\left\{\nu:(a)_{\nu}<(b)_{\nu}\right\} \cap \bigcap_{b \in B} C_{a} \cap \bigcap_{\substack { a_{1}, \cdots, a_{n},{c}{f \in \mathcal{R}{ a _ { 1 } , \cdots , a _ { n } , \begin{subarray} { c } { f \in \mathcal { R } } }\end{subarray}} A_{f a_{1} \cdots a_{n}} .
$$

By $\operatorname{ch}(I)=\boldsymbol{K}_{\tau}$, we have $[D]=1$. Therefore there is a $\nu_{0} \in D . a_{0}$ is
3) Cf. [2].
defined to be $(\boldsymbol{\$})_{\nu_{0}}$. (2) is clear by this definition. Now we shall prove (1). Assume that

$$
c \in\left[B \cup\left\{a_{0}\right\}\right]_{\mathfrak{R}} \cap a_{0} .
$$

Since \mathfrak{A} is closed under substitution, there is a function f such that

$$
c=f\left(b_{1}, \cdots, b_{n}, a_{0}\right)<a_{0} .
$$

By the definition of ν_{0}, we have $d_{1}, \cdots, d_{n} \in B$ such that

$$
\nu_{0} \in\left\{\nu:\left(d_{1}\right)_{\nu}=b_{1}\right\}, \cdots, \nu_{0} \in\left\{\nu:\left(d_{n}\right)_{\nu}=b_{n}\right\} .
$$

And we also have

$$
\nu_{0} \in \bigcup_{g \in \mathscr{थ}}\left\{\nu: f\left(\left(d_{1}\right)_{\nu}, \cdots,\left(d_{n}\right)_{\nu},\left(\boldsymbol{\aleph}_{\tau}\right)_{\nu}\right)=\left(g\left(d_{1}, \cdots, d_{n}, \boldsymbol{\aleph}_{\tau}\right)\right)_{\nu}\right\} .
$$

Therefore for some $g \in \mathfrak{R}$, we have

$$
f\left(b_{1}, \cdots, b_{n}, a_{0}\right)=f\left(\left(d_{1}\right)_{\nu_{0}}, \cdots,\left(d_{n}\right)_{\nu_{0}},\left(\boldsymbol{K}_{r}\right)_{\nu_{0}}\right)=\left(g\left(d_{1}, \cdots, d_{n}, \boldsymbol{\aleph}_{\tau}\right)\right)_{\tau_{0}} .
$$

If $\boldsymbol{\zeta}_{\tau} \leq g\left(d_{1}, \cdots, d_{n}, \boldsymbol{\aleph}_{\tau}\right)$, then $a_{0} \leq\left(f\left(d_{1}, \cdots, d_{n}, \boldsymbol{\zeta}_{\tau}\right)\right)_{\nu_{0}}$. Therefore we have

$$
g\left(d_{1}, \cdots, d_{n}, \boldsymbol{\aleph}_{r}\right)<\boldsymbol{K}_{r} .
$$

Hence we obtain that $\nu_{0} \in\left\{\nu:\left(g\left(d_{1}, \cdots, d_{n}, \mathcal{K}_{r}\right)\right)_{\nu}=g\left(d_{1}, \cdots, d_{n}, \boldsymbol{K}_{r}\right)\right\}$. Namely we have $f\left(b_{1}, \cdots, b_{n}, a_{0}\right)=g\left(d_{1}, \cdots, d_{n}, \aleph_{v}\right) \in B$.
Now we prove (3). Assume that

$$
c \in\left[B \cup\left\{a_{0}\right\}\right]_{\mathscr{A}} \text { and }\left[\left\{\nu:(d)_{\nu}=c\right\}\right]>0 .
$$

Then there are ordinals $d_{1}, \cdots, d_{n} \in B$ such that

$$
\left[\left\{\nu: c=f\left(\left(d_{1}\right)_{\nu}, \cdots,\left(d_{n}\right)_{\nu},\left(a_{0}\right)_{\nu}\right) \text { and }(d)_{\nu}=c\right\}\right]>0 .
$$

By $\left[\bigcup_{g \in \mathscr{A}}\left\{\nu: f\left(\left(d_{1}\right)_{\nu}, \cdots,\left(d_{n}\right)_{\nu},\left(a_{0}\right)_{\nu}\right)=\left(g\left(d_{1}, \cdots, d_{n}, a_{0}\right)_{\nu}\right\}\right]=1\right.$, we have for some $g \in \mathfrak{A}$,

$$
\left[\left\{\nu:(d)_{\nu}=\left(g\left(d_{1}, \cdots, d_{n}, a_{0}\right)\right)_{\nu}\right\}\right]>0 .
$$

Hence we have $d=g\left(d_{1} \cdots, d_{n}, a_{0}\right) \in\left[B \cup\left\{a_{0}\right\}\right]_{\mathfrak{Q}}$.
By the same method as in [1], [2] we obtain the following theorem.
Theorem. Let I be a proper ideal on $\boldsymbol{K}_{\text {. }}$ such that $\operatorname{sat}(I)<\operatorname{ch}(I)$ $=\boldsymbol{\aleph}_{r}\left(>\boldsymbol{\aleph}_{0}\right)$. Then \sum_{1}^{1}-transcendency of cardinals is true for every cardinals $\boldsymbol{\aleph}_{0}>\max \left(\boldsymbol{\aleph}_{0}, \mathrm{sat}(I)\right)$. Namely we have, for enery \sum_{1}^{1}-formula $P\left(a a_{1}, \cdots, a_{n}\right)$ in (\boldsymbol{K}_{r}).

$$
\begin{aligned}
& \forall x_{1} \cdots \forall x_{n}\left(x_{1}, \cdots, x_{n}<\boldsymbol{K}_{\sigma} \wedge \mathbf{3} x P\left(x, x_{1}, \cdots, x_{n}\right)\right. \\
& \left.\rightarrow \mathbf{\Xi} x\left(x<\boldsymbol{K}_{\sigma} \wedge P\left(x, x_{1}, \cdots, x_{n}\right)\right)\right) .
\end{aligned}
$$

Corollary. If \boldsymbol{K}_{i} is real-valued measurable cardinal, then $\sum_{1}^{1}-T C$ holds in ($\boldsymbol{K}_{\mathbf{r}}$).

References

[1] Kanji Namba: \boldsymbol{N}_{0}-complete cardinals and transcendency of cardinals. Journal of Symbolic, Logic, 32, 452-472 (1967).
[2] -: Axiom of strong infinity and analytic hierarchy of ordinal numbers. Commentariorum Mathematicarum Universitatis Sancti Pauli, 16, 21-55 (1967).
[3] Robert Solovay: Real-valued measurable cardinals. Lecture Note of 1967 Summer Institute on Axiomatic Set Theory held at UCLA.
[4] Gaishi Takeuti: On the recursive functions of ordinal numbers. Journal of Mathematical Society of Japan, 12, 119-128 (1960).
[5] -: Transcendency of cardinals. Journal of Symbolic Logic, 30, 1-7 (1965).
[6] Stanislaw Ulam: Zur Masstheorie in der allgemeinen Mengenlehre. Fundamenta Mathematicae, 16, 140-150 (1930).

