No. 7]

132. Real-valued Measurable Cardinals and $\sum_{i=1}^{1}$ -Transcendency of Cardinals^{*})

Ву Капјі NAMBA

Department of Mathematics, Tokyo University of Education

(Comm. by Zyoiti SUETUNA, M.J.A., Sept. 12, 1968)

In this paper, we shall prove \sum_{1}^{1} -transcendency of cardinals¹⁾ under the assumption of existence of real-valued measurable cardinal,²⁾ applying the results and difinitions used in [2] and [3].

Let I be an ideal over a set A. The equivalence relation between two subsets B and C of A is defined by

$$B \sim C \equiv B - C - B \in I \land B - C \in I.$$

By [B] we donote the equivalence class including B. And [A] and $[\phi]$ are sometimes abbreviated as 1 and 0 respectively. The relation [B] > [C] is defined by $[B] > [C] \equiv BC \notin I \land C - B \in I$.

An ideal I is called a-complete if

 $[A_{\nu}]=0$ for all $\nu < a$ implies $[\bigcup A_{\nu}]=0$.

The character of I is defined to be the smallest ordinal a such that I is not a-complete, and it is denoted by ch(I).

An ideal I is called *a*-saturated if

 $[A_{\nu}] > 0$, $[A_{\nu} \cap A_{\mu}] = 0$ for all $\nu \neq \mu$, and ν , $\mu < b$ imply b < a.

The saturation number of I is defined to be the smallest ordinal a such that I is a-saturated, and it is denoted by sat(I).

Let *I* be an ideal over \aleph_r . And let \mathfrak{A} be a set of functions in On^{\aleph_r} (On is the class of all ordinal numbers). A function *f* is said to be incompressible (cf. [3]) with respect to \mathfrak{A} if the following conditions are satisfied :

(1) $[\{\nu: g(\nu) < f(\nu)\}] = 1$ for every $g \in \mathfrak{A}$,

(2) if $[\{\nu : h(\nu) < f(\nu)\}] > 0$, then, $[\{\nu : h(\nu) \le g(\nu)\}] > 0$ for some $g \in \mathfrak{A}$.

The following lemma is proved easily. (cf. [3]).

Lemma 1. Let I be an ideal over \aleph_{τ} such that $\operatorname{sat}(I) \leq \operatorname{ch}(I)$ $(\aleph_0 < \operatorname{ch}(I))$. And let \mathfrak{A} be a set of functions in $\operatorname{On}^{\aleph_{\tau}}$. Then there is an incompressible function with respect to \mathfrak{A} .

Now we shall define a function $a^* \in On^{\aleph_r}$ by the induction on a as one of incompressible functions with respect to $\{b^* : b < a\}$. And $a^*(\nu)$

^{*)} This work is partially supported by Matsunaga Science Foundation.

¹⁾ Cf. [2], [5].

²⁾ Cf. [3], [6].

is abbreviated as $(a)_{\mu}$.³⁾

Lemma 2. Let \aleph_{σ} be the smallest cardinal number such that $\max(\aleph_1, \operatorname{sat}(I)) \leq \aleph_{\sigma+1}$. Then there is a set of functions \mathfrak{A} with the following properties:

- (1) $\overline{\mathfrak{A}} \leq \mathfrak{A}_{\mathfrak{a}}$
- (2) A is arithmetically closed basis (cf. [1], [2]),
- (3) if $f \in \mathfrak{A}$, then

$$\left[\bigcup_{g\in\mathfrak{N}} \{\nu: f((a_1)_{\nu}, \cdots, (a_n)_{\nu}) = (g(a_1, \cdots, a_n))_{\nu}\}\right] = 1.$$

Proof. Let f be a function. And we consider the set

$$B_{a_1} \cdots {}_{a_n} = \{ d : [\{\nu : f((a_1)_{\nu}, \cdots, (a_n)_{\nu}) = (d)_{\nu}\}] > 0 \}.$$

Then we have

(1) $\overline{B_{a_1}\cdots a_n} \leq \aleph_o,$ (2) $[\bigcup_{d \in B_{a_1}\cdots a_n} \{\nu : f((a_1)_{\nu}, \cdots, (a_n)_{\nu}) = (d)_{\nu}\}] = 1.$

Now we put $B_{a_1} \cdots {}_{a_n} = \{d_{\rho} : \rho < \aleph_{\sigma}\}$. And the functions f_{ρ} is introduced by

$$f_{\rho}(a_1, \cdots, a_n) = d_{\rho}.$$

Then we have

$$\left[\bigcup_{a\leq N_{\sigma}} \{\nu: f((a_1)_{\nu}, \cdots, (a_a)_{\nu}) = (f_{\rho}(a_1, \cdots, a_a))_{\nu}\}\right] = \mathbf{1}.$$

The required set \mathfrak{A} is easily obtained from this.

Lemma 3. Let I be a proper ideal on \aleph , with the property sat $(I) < ch(I) = \aleph_r(>\aleph_0)$. And let the following conditions be satisfied:

- (1) $\overline{B}, \overline{\mathfrak{A}} < \aleph_{\tau}, \aleph_{\tau} \in B,$
- (2) A is arithmetically closed,
- (3) $\begin{bmatrix} \bigcup_{g \in \mathfrak{A}} \{\nu : f((a_1)_{\nu}, \cdots, (a_n)_{\nu}) = (g(a_1, \cdots, a_n))_{\nu} \end{bmatrix} = 1 \quad for f \in \mathfrak{A},$
- (4) B is \mathfrak{A} -closed,
- (5) $a \in B \text{ and } [\{\nu : (d)_{\nu} = a\}] > 0 \text{ then } d \in B.$

Then there is an ordinal a_0 such that

- (1) $[B \cup \{a_0\}]_{\mathfrak{A}} \cap a_0 \subset B$,
- (2) $\sup(B\cap \aleph_{\tau}) \leq a_0 < \aleph_{\tau}, a_0 \notin B,$
- (3) if $c \in [B \cup \{a_0\}]_{\mathfrak{A}}$ and $[\{\nu : (d)_{\nu} = c\}] > 0$ then $d \in [B \cup \{a_0\}]_{\mathfrak{A}}$.

Proof. We shall first define the sets as follows

$$C_a = \bigcup_{\substack{[\{\nu: (d)_{\nu}=a\}]>0}} \{\nu: (d)_{\nu}=a\},\$$
$$A_{fa\dots a} = \bigcup_{g \in \mathfrak{A}} \{\nu: f((a_1)_{\nu}, \cdots, (a_n)_{\nu}) = (g(a_1, \cdots, a_n))_{\nu}\}$$

And the set D is defined by

 $D = \{\nu : (\aleph_{\tau})_{\nu} < \aleph_{\tau}\} \cap \bigcap_{\substack{a < b \\ a, b \in B}} \{\nu : (a)_{\nu} < (b)_{\nu}\} \cap \bigcap_{b \in B} C_{a} \cap \bigcap_{\substack{a_{1}, \cdots, a_{n} \in B \\ f \in \mathfrak{A}}} A_{fa_{1} \cdots a_{n}}.$

By $ch(I) = \mathbb{K}_{\cdot}$, we have [D] = 1. Therefore there is a $\nu_0 \in D$. a_0 is

3) Cf. [2].

defined to be $(\mathbf{x})_{\nu_0}$. (2) is clear by this definition. Now we shall prove (1). Assume that

 $c \in [B \cup \{a_0\}]_{\mathfrak{A}} \cap a_0.$

Since \mathfrak{A} is closed under substitution, there is a function f such that $c=f(b_1,\cdots,b_n,a_0)<a_0$

By the definition of ν_0 , we have $d_1, \dots, d_n \in B$ such that

$$u_0 \in \{\nu : (d_1)_{\nu} = b_1\}, \dots, \nu_0 \in \{\nu : (d_n)_{\nu} = b_n\}.$$

And we also have

$$\nu_0 \in \bigcup_{g \in \mathfrak{A}} \{\nu : f((d_1)_{\nu}, \cdots, (d_n)_{\nu}, (\mathbf{X}_{\tau})_{\nu}) = (g(d_1, \cdots, d_n, \mathbf{X}_{\tau}))_{\nu}\}.$$

Therefore for some $g \in \mathfrak{A}$, we have

 $f(b_1, \dots, b_n, a_0) = f((d_1)_{\nu_0}, \dots, (d_n)_{\nu_0}, (\mathbf{X}_{\tau})_{\nu_0}) = (g(d_1, \dots, d_n, \mathbf{X}_{\tau}))_{\tau_0}.$ If $\aleph_r \leq g(d_1, \dots, d_n, \aleph_r)$, then $a_0 \leq (f(d_1, \dots, d_n, \aleph_r))_{\nu_0}$. Therefore we have

$$g(d_1, \cdots, d_n, \mathbf{X}_r) < \mathbf{X}_r$$

Hence we obtain that $\nu_0 \in \{\nu : (g(d_1, \dots, d_n, \aleph_r))_{\nu} = g(d_1, \dots, d_n, \aleph_r)\}.$ Namely we have $f(b_1, \dots, b_n, a_0) = g(d_1, \dots, d_n, \aleph_{\nu}) \in B$. Now we prove (3). Assume that

$$c \in [B \cup \{a_0\}]_{\mathfrak{A}}$$
 and $[\{\nu : (d)_{\nu} = c\}] > 0.$

Then there are ordinals $d_1, \dots, d_n \in B$ such that

 $[\{\nu: c = f((d_1)_{\nu}, \dots, (d_n)_{\nu}, (a_0)_{\nu}) \text{ and } (d)_{\nu} = c\}] > 0.$ By $[\bigcup_{g \in \mathfrak{A}} \{\nu : f((d_1)_{\nu}, \dots, (d_n)_{\nu}, (a_0)_{\nu}) = (g(d_1, \dots, d_n, a_0))_{\nu}\}] = 1$, we have for

some $g \in \mathfrak{A}$,

$$[\{\nu: (d)_{\nu} = (g(d_1, \cdots, d_n, a_0))_{\nu}\}] > 0.$$

Hence we have $d = g(d_1, \dots, d_n, a_0) \in [B \cup \{a_0\}]_{\mathfrak{A}}$.

By the same method as in [1], [2] we obtain the following theorem.

Theorem. Let I be a proper ideal on \aleph_r such that $\operatorname{sat}(I) < \operatorname{ch}(I)$ $= \mathbf{X}_{c}(>\mathbf{X}_{0})$. Then $\sum_{i=1}^{1}$ -transcendency of cardinals is true for every cardinals \aleph_{o} > max(\aleph_{o} , sat(I)). Namely we have, for eacry $\sum_{i=1}^{1}$ -formula $P(a a_1, \cdots, a_n)$ in (\aleph_{τ}) .

$$\forall x_1 \cdots \forall x_n (x_1, \cdots, x_n < \aleph_{\sigma} \land \exists x P(x, x_1, \cdots, x_n) \\ \rightarrow \exists x (x < \aleph_{\sigma} \land P(x, x_1, \cdots, x_n))).$$

Corollary. If \aleph_{ϵ} is real-valued measurable cardinal, then $\sum_{i=1}^{1} TC$ holds in (\aleph_r) .

References

- \aleph_0 -complete cardinals and transcendency of cardinals. [1] Kanji Namba: Journal of Symbolic, Logic, 32, 452-472 (1967).
- -: Axiom of strong infinity and analytic hierarchy of ordinal numbers. [2] -Commentariorum Mathematicarum Universitatis Sancti Pauli, 16, 21-55 (1967).
- [3] Robert Solovay: Real-valued measurable cardinals. Lecture Note of 1967 Summer Institute on Axiomatic Set Theory held at UCLA.

- [4] Gaishi Takeuti: On the recursive functions of ordinal numbers. Journal of Mathematical Society of Japan, 12, 119-128 (1960).
- [5] ——: Transcendency of cardinals. Journal of Symbolic Logic, 30, 1-7 (1965).
- [6] Stanislaw Ulam: Zur Masstheorie in der allgemeinen Mengenlehre. Fundamenta Mathematicae, 16, 140–150 (1930).