210. Semifield Valued Functionals on Linear Spaces

By Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, m. J.A., Nov. 12, 1968)

An ordered (real) linear space E is defined as a linear space with an order relation satisfying the following conditions:

1) $x \leqslant y$ implies $x+z \leqslant y+z$,
2) $x \leqslant y, 0 \leqslant \alpha$ imply $\alpha x \leqslant \alpha y$
for every x, y in E. Then $K=\{x \mid x \geqslant 0\}$ is a convex cone, i.e., K has the following properties:
3) $K+K \subset K$,
4) $\alpha K \subset K$ for every positive real number α,
5) $K \cap(-K)=$ the zero element of E.

As well known, for a real linear space, there is a one-to-one correspondence between all order relations 1), 2) and all convex sets with properties 3)-5). For details of ordered linear spaces, [1], [3]-[5].

In this Note, we shall consider semifield valued functionals on E. Unless the contrary is mentioned, functionals mean semifield valued functionals.

We shall prove a theorem which is a generalization of our result [2]. In our discussion, we follow the techniques by M. Cotlar and R. Cignoli [1].

Theorem 1. Let E be an ordered linear space, K its associated cone, and G a linear subspace of E. Let $p(x)$ be a sublinear functional on $E, f(x)$ a linear functional on F satisfying

(1) $\quad f(y) \ll p(y+z)$ for all $y \in G, z \in K$.

Then there is a linear extension $F(x)$ on E of $f(x)$ such that

$$
F(x) \ll p(x+z) \quad \text { for all } \quad x \in E, z \in K .
$$

The notion of semifields was introduced by M. Antonovski, V. Boltjanski and T. Sarymsakov. For the notations used, see my reviews of their books, Zentralblatt für Mathematik, 142, pp. 209-211 (1968).

Proof. Let $E-G \neq \varnothing$, and we take an element $x_{0} \in E-G$. Then each element x of the linear space $G_{1}=\left(G, x_{0}\right)$ generated by G and x_{0} is uniquely represented in the form of $x=x^{\prime} \pm \alpha x_{0}\left(x^{\prime} \in G, \alpha>0\right)$. We shall extend the linear functional $f(x)$ on G_{1}. Consequently, by the transfinite method or the Zorn lemma, we have a linear functional $F(x)$ satisfying the conditions mentioned in Theorem 1.

Let $y_{1}, y_{2} \in G, z_{1}, z_{2} \in K$, then by (1) we have

$$
\begin{aligned}
f\left(y_{1}\right)+f\left(y_{2}\right) & =f\left(y_{1}+y_{2}\right) \ll p\left(y_{1}+y_{2}+z_{1}+z_{2}\right) \\
& \ll p\left(y_{1}+x_{0}+z_{1}+y_{2}-x_{0}+z_{2}\right) \\
& \ll p\left(y_{1}+x_{0}+z_{1}\right)+p\left(y_{2}-x_{0}+z_{2}\right) .
\end{aligned}
$$

Hence

$$
-p\left(y_{2}-x_{0}+z_{2}\right)+f\left(y_{2}\right) \ll p\left(y_{1}+x_{0}+z_{1}\right)-f\left(y_{1}\right)
$$

Since $y_{1}, y_{2} \in G, z_{1}, z_{2} \in K$ are arbitrary, we have

$$
\begin{aligned}
& a=\sup _{\substack{y_{2} \in G \\
z_{2} \in K}}\left\{-p\left(y_{2}-x_{0}+z_{2}\right)+f\left(y_{2}\right)\right\} \ll \\
& b=\inf _{\substack{y_{1} \in G \\
z_{1} \in K}}\left\{p\left(y_{1}+x_{0}+z_{1}\right)-f\left(y_{1}\right)\right\} .
\end{aligned}
$$

Take an elemant c such that $a \ll c \ll b$. Then, for $y_{1} \in G, z_{1} \in K$,

$$
\begin{equation*}
f\left(y_{1}\right)+c \ll p\left(y_{1}+x_{0}+z_{1}\right) \tag{2}
\end{equation*}
$$

and, for $y_{2} \in G, z_{2} \in K$,
(3)

$$
f\left(y_{2}\right)-c \ll p\left(y_{2}-x_{0}+z_{2}\right)
$$

Define f^{*} by

$$
f^{*}\left(x^{\prime} \pm \alpha x_{0}\right)=f\left(x^{\prime}\right) \pm \alpha c, \quad x^{\prime} \in G, \quad \alpha>0
$$

Then it is obvious that f^{*} is a linear functional on G_{1}. By (2), (3), we have

$$
\begin{aligned}
& f\left(\alpha y_{1}\right)+\alpha c \ll p\left(\alpha y_{1}+\alpha x_{0}+\alpha z_{1}\right), \\
& f\left(\alpha y_{2}\right)-\alpha c \ll p\left(\alpha y_{2}-\alpha x_{0}+\alpha z_{2}\right) .
\end{aligned}
$$

Therefore those inequalities imply

$$
f\left(x^{\prime}\right) \pm \alpha c \ll p\left(x^{\prime}+\alpha x_{0}+z\right)
$$

which is

$$
f^{*}(x) \ll p(x+z) \quad \text { for } \quad x \in G_{1}, z \in K
$$

Therefore the proof of Theorem 1 is complete.
Theorem 2. Let E be an ordered linear space, K its associated cone. Let $f(x)$ be a linear functional defined on a linear subspace G of $E, p(x)$ a sublinear functional on E. Then the following conditions are equivalent:

1) $f(x) \ll p(x+z)$ for $x \in G, z \in K$,
2) There is a linear extension $F(x)$ on E of $f(x)$ such that $0 \ll F(x)$ on K and $F(x) \ll p(x)$ on E.

Proof. 1) \Rightarrow 2). By Theorem 1, there is a linear functional $F(x)$ on E such that $F(x) \ll p(x+z)$ for $x \in E, z \in K$. Hence $F(x) \ll p(x)$. Put $x=-z$ in $F(x) \ll p(x+z)$, then we have

$$
F(-z) \ll p(-z+z)=0 \text { for } z \in K
$$

Hence $-F(z) \ll 0$ on K, which is $0 \ll F(z)$ on K.
$2) \Rightarrow 1) . \quad 0 \ll F(z)$ on K implies

$$
f(x)=F(x) \ll F(x)+F(z)=F(x+z) \ll p(x+z)
$$

for $x \in G, z \in K$. Therefore the proof of Theorem 2 is complete.
Theorem 3. Let E be an ordered linear space, K its associated cone. Let $f(x)$ be a linear functional on $E, p(x)$ a sublinear functional,
$g(x)$ a linear functional on a linear subspace F of E. Then the following conditions are equivalent:

1) There is a linear extension $G(x)$ on E of $g(x)$ such that

$$
\begin{array}{lll}
f(z) \ll G(z) & \text { for } \quad z \in K, \tag{1}\\
G(x) \ll p(x) & \text { for } & x \in E .
\end{array}
$$

2) There is a linear extension $G(x)$ on E of $g(x)$ such that
(3) $G(x)+f(z) \ll p(x+z)$ for $x \in E, z \in K$.
3) The functional $g(x)$ satisfies
(4) $\quad g(x)+p(z) \ll p(x+z) \quad$ for $\quad x \in E, z \in K$.

The formulation is due to [1].
Proof. 1) $\Rightarrow 2$). Let $G(x)$ be a linear extension of $g(x)$ satisfying the conditions (1), (2). Then, for $x \in E, z \in K$,

$$
G(x)+f(z) \ll G(x)+G(z)=G(x+z) \ll p(x+z) .
$$

$2) \Rightarrow 3$). It is obvious that (3) implies (4).
$3) \Rightarrow 1$). Let $p_{1}(x)=p(x)-f(x), g_{1}(x)=g(x)-f(x)$, then by (4), we have

$$
\left(g_{1}(x)+f(x)\right)+f(z) \ll p_{1}(x+z)+f(x+z) .
$$

Hence $g_{1}(x) \ll p_{1}(x+z)$ for $y \in F, z \in K$. By Theorem 1, there is a linear functional $G_{1}(x)$ such that $G_{1}(x)$ is an extension of $g_{1}(x)$, and $G_{1}(x)$ $\ll p_{1}(x+z)$ for $x \in E, z \in K$. Therefore

$$
G_{1}(x) \ll p_{1}(x+z)=p(x+z)-f(x)-f(z),
$$

which implies

$$
G_{1}(x)+f(x)+f(z) \ll p(x+z)
$$

for $x \in E, z \in K$. Let $G(x)=G_{1}(x)+f(x)$, then for $x \in F$,

$$
G(x)=G_{1}(x)+f(x)=g_{1}(x)+f(x)=g(x) .
$$

Therefore $G(x)$ is an extension of $g(x)$, and from

$$
G(x)+f(z)=G_{1}(x)+f(x)+f(z) \ll p(x+z),
$$

we have $G(x) \ll p(x)$ for $x \in E$, and $f(z) \ll G(z)$ for $z \in K$. The proof of Theorem 3 is complete.

References

[1] M. Cotlar and R. Cignoli: Nociones de espacios normados. Buenos Aires (1967).
[2] K. Iséki and S. Kasahara: On Hahn-Banach type extension theorem. Proc. Japan Acad., 41, 29-30 (1965).
[3] I. Namioka: Partially ordered linear topological spaces. Memoirs of Amer. Math. Soc., 24 (1957).
[4] A. L. Peressini: Ordered Topological Vector Spaces. New York (1967).
[5] H. H. Schaefer: Topological Vector Spaces (2nd edition). New York (1967).

