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210. Semifield Valued Functionals on Linear Spaces

By Kiyoshi IS#,KI

(Comm. by Kinjir6 KtIUGI, M. ff.A., Nov. 12, 1968)

An ordered (real) linear space E is defined as a linear space with
an order relation satisfying the following conditions"

1) x< y implies x+ z< y+ z,
2) x< y, O<c imply

for every x, y in E. Then K-{xl x>0} is a convex cone, i.e., K has
the following properties"

3) K+KcK,
4) cKK for every positive real number c,
5) Kfq (--K)-the zero element of E.
As well known, or a real linear space, there is a one-to-one cor-

respondence between all order relations 1), 2) and all convex sets with
properties 3)-5). For details o2 ordered linear spaces, [1], [3]-[5].

In this Note, we shall consider semifield valued unctionals on E.
Unless the contrary is mentioned, unctionals mean semifield valued
unctionals.

We shall prove a theorem which is a generalization o our result
[2]. In our discussion, we follow the techniques by M. Cotlar and R.
Cignoli [1].

Theorem 1. Let E be an ordered linear space, K its associated
cone, and G a linear subspace of E. Let p(x) be a sublinear functional
on E, f(x) a linear functional on F satisfying
(1) f(y) << p(y + z) for all y e G, z e K.
Then there is a linear extension F(x) on E of f(x) such that

F(x)<<p(x+ z) for all x e E, z e K.
The notion of semifields was introduced by M. Antonovski, V.

Boltjanski and T. Sarymsakov. For the notations used, see my
reviews o their books, Zentralblatt ftir Mathematik, 142, pp. 209-211
(1968).

Proof. Let E-G#-O, and we take an element Xo e E-G. Then
each element x of the linear space G-(G, Xo) generated by G and x0 is
uniquely represented in the form of x-x’+_aXo(X’ e G, c>0). We
shall extend the linear functional f(x) on G. Consequently, by the
transfinite method or the Zorn lemma, we have a linear functional
F(x) satisfying the conditions mentioned in Theorem 1.

Let y, y e G, z, z e K, then by (1) we have
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Hence

f(y) / f(y) f(y- y) p(y+y+ z/ z)
p(y -t- xo+ z+ y-- Xo- z)

(p(y/ Xo -t- z) + p(y.-- Xo+ z).

P(Y2 Xo+ z2) - f(Y2) ((P(Y- Xo+ zl) f(y).
Since y, y2 e G, z, z2 e K are arbitrary, we have

a-- sup (-p(y2- Xo/ z2) + f(Y2)} ((
Y
zGK

b in {p(y+ Xo.+ z) f(y)},
Yq
zlK

Take an elemant c such that a<< c<<b. Then, for y e G, z e K,
( 2 ) f(y) + c ((p(y+ Xo+ z),
and, for y e G, z e K,
( 3 ) f(y) c ((p(y- Xo+ z).
Define f* by

f*(x’Xo)=f(x’)ac, x’ e G,
Then it is obvious that f* is a linear functional on G. By (2), (3),
we have

Therefore those inequalities imply

which is
f*(x) << p(x + z) or x e G, z e K.

Therefore the proof of Theorem 1 is complete.
Theorem 2. Let E be an ordered linear space, K its associated

cone. Let f(x) be a linear functional defined on a linear subspace G
of E, p(x) a sublinear functional on E. Then the following conditions
are equivalent"

1) f(x)((p(x+ z) for x e G, z e K,
2) There is a linear extension F(x) on E of f(x) such that 0 ((F(x)

on K and F(x)((p(x) on E.
Proof. 1)2). By Theorem 1, there is a linear unctional F(x)

on E such that F(x)((p(x+z) or x e E, z eK. Hence F(x)((p(x).
Put x z in F(x) << p(x+ z), then we have

F(-z)<<p(-z+z)=0 for zeK.
Hence F(z) ((0 on K, which is 0 ((F(z) on K.

2)1). O((F(z) on K implies

f(x) F(x) << F(x) + F(z) F(x+ z) << p(x+ z)
for x e G, z e K. Therefore the proof of Theorem 2 is complete.

Theorem 3. Let E be an ordered linea space, K its associated
cone. Let f(x) be a linear functional on E, p(x) a sublinear functional,
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g(x) a linear functional on a linear subspace F of E. Then the follow-
ing conditions are equivalent"

1) There is a linear extension G(x) on E of g(x) such tha$

(1) f(z) G(z) for z e K,
(2) G(x)((p(x) for x e E.

2) There is a linear extension G(x) on E of g(x) such that
(3) G(x) + f(z) p(x+ z) for x e E, z e K.

3) The functional g(x) satisfies
(4) g(x) + p(z) p(x+ z) for x e E, z e K.

The formulation is due to [1].
Proof. 1)2). Let G(x) be a linear extension of g(x) satisfying

the conditions (1), (2). Then, for x e E, z e K,
G(x) + f(z) << G(x) + G(z) G(x + z) <<p(x + z).
It is obvious that (3) implies (4).
Let pl(x)=p(x)-f(x), g(x)=g(x)--f(x), then by (4), we

2)3).
3)1).

have
(g(x) + f(x)) + f(z) <<pl(x + z) + f(x + z).

Hence g(x)<<p(x+ z) for y e F, z e K. By Theorem 1, there is a linear
functional G(x) such that G(x) is an extension of g(x), and G(x)
<<p(x+ z) for x e E, z e K. Therefore

Gl(x) <<p(x+ z) --p(x + z) f(x) f(z),
which implies

G(x) + f(x) + f(z) <<p(x + z)
for x e E, z e K. Let G(x)= G(x)+ f(x), then for x e F,

G(x) G(x) + f(x) gl(x) + f(x) g(x).
Therefore G(x) is an extension of g(x), and rom

G(x) + f(z) G(x) + f(x) + f(z) <<p(x + z),
we have G(x)((p(x) for x e E, and f(z)((G(z) for z e K. The proof of
Theorem 3 is complete.
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