Proc. Japan Acad., 44 (1968)

201. On Numbers Expressible as a Weighted Sum of Powers

By Palahenedi Hewage DIANANDA Department of Mathematics, University of Singapore, Singapore

(Comm. by Zyoiti SUETUNA, M.J.A., Nov. 12, 1968)

1. In a recent paper [3] we proved

Theorem 1. There is n_0 such that for every $n \ge n_0$ there are positive integers x and y satisfying

where f and h are any integers such that
$$f \ge h \ge 2$$
,

$$c = h f^{1-(1/h)}$$
 and $p = \left(1 - \frac{1}{f}\right) \left(1 - \frac{1}{h}\right)$.

Mordell [4] has recently proved

Theorem 2. There are non-negative integers x_1, \dots, x_k satisfying $n \leq a_1 x_1^{h_1} + \dots + a_k x_k^{h_k} < n + cn^p + O(n^{p(h_k-2)/(h_k-1)})$

where
$$a_1, \dots, a_k \ge 1, 1 < h_1 \le h_2 \le \dots \le h_k,$$

 $c = (a_1^{1/h_1}h_1)(a_2^{1/h_2}h_2)^{1-(1/h_1)}(a_3^{1/h_3}h_3)^{(1-(1/h_1)(1-(1/h_2))}$
 $\dots (a_k^{1/h_k}h_k)^{(1-(1/h_1))\dots(1-(1/h_{k-1}))}$
and $p = \left(1 - \frac{1}{h_1}\right) \dots \left(1 - \frac{1}{h_k}\right).$

Theorem 1 generalizes some results previously obtained by Bambah and Chowla [1], Uchiyama [5] and the author [2] while Theorem 2 deals with a problem more general than those discussed in [1], [5], [2] and [3].

In this note we prove the following generalization of Theorem 1 and refinement of Theorem 2:

Theorem 3. There is n_0 such that for every real $n \ge n_0$ there are positive integers x_1, \dots, x_k satisfying

 $n < a_1 x_1^{h_1} + \cdots + a_k x_k^{h_k} < n + c n^p$

where a_1, \dots, a_k are real and >0, h_1, \dots, h_k are real and >1, k>1, c and p are as in Theorem 2 and

 $a_1h_1^{h_1} \leq a_2h_2^{h_2} \leq \cdots \leq a_kh_k^{h_k}.$

In what follows we write [t] for the greatest integer $\leq t$.

2. We first prove the following generalization of Theorem 4A of [2]:

Theorem 4. Let a and
$$b > 0$$
, f and $h > 1$,
 $N = N(n) = a\{(n/a)^{1/f} + 1\}^f - n + b$

and

$$g(n) = N - b\{(N/b)^{1/h} - 1\}^{h}$$

Then for every $n \ge a$ there are positive integers x and y satisfying

 $n < ax^{f} + by^{h} < n + g(n)$.

Proof. Clearly N increases with n and g(n) with N. Thus N > b and g(n) > b. Thus the theorem is clearly true if $(n/a)^{1/f}$ is an integer. In the rest of the proof we therefore assume that

(1) $m = [(n/a)^{1/f}] < (n/a)^{1/f}.$

The theorem is clearly true if

$$a(m+1)^{f}+b < n+g(n).$$

In the rest of the proof we therefore assume that

(2)

$$a(m+1)^{f} + b \ge n + g(n).$$
Since $m = [(n/a)^{1/f}] \ge 1$ and
 $am^{f} + b \left[\left(\frac{n - am^{f}}{b} \right)^{1/h} + 1 \right]^{h} \le am^{f} + b \left\{ \left(\frac{n - am^{f}}{b} \right)^{1/h} + 1 \right\}^{h}$

Lemma 1. (1) and (2) imply that

$$am^{f} + b\left\{\left(\frac{n-am^{f}}{b}\right)^{1/h} + 1\right\}^{h} < n + g(n)$$

Proof. From (2)

$$\begin{array}{c} n - am^{f} \leq a(m+1)^{f} - am^{f} + b - g(n). \\ \text{Clearly } (m+1)^{f} - m^{f} \text{ increases with } m. \quad \text{Hence from (1)} \\ n - am^{f} < a\{(n/a)^{1/f} + 1\}^{f} - n + b - g(n) \\ = N - g(n) = b\{(N/b)^{1/h} - 1\}^{h}. \end{array}$$

Hence

$$am^{f} + b\left\{\left(\frac{n-am^{f}}{b}\right)^{1/h} + 1\right\}^{h} = n + b\left\{\left(\frac{n-am^{f}}{b}\right)^{1/h} + 1\right\}^{h} - (n-am^{f}) < n + N - b\left\{(N/b)^{1/h} - 1\right\}^{h} = n + g(n)$$

since $b\left\{\left(\frac{n-am^{f}}{b}\right)^{1/h}+1\right\}^{h}-(n-am^{f})$ clearly increases with $n-am^{f}$.

This completes the proof.

We next prove the following generalization of Theorem 1:

Theorem 5. There is n_0 such that for every $n \ge n_0$ there are positive integers x and y satisfying

 $n < ax^{f} + by^{h} < n + b^{1/h} h(a^{1/f}f)^{1-(1/h)} n^{(1-(1/f))(1-(1/h))}$

where a and b > 0 and f and h > 1.

Proof. We have

$$N(n) = a\{(n/a)^{1/f} + 1\}^{f} - n + b$$

= $f(n/a)^{1-(1/f)}\{1 + O(n^{-1/f}) + O(n^{(1/f)-1})\}$

as $n \rightarrow \infty$. Hence

$$solution (N/b)^{1/h} - 1 \}^{h} = b^{1/h} h N^{1 - (1/h)} \left\{ 1 - \frac{h - 1}{2} \left(\frac{N}{b} \right)^{-1/h} + O(N^{-2/h}) \right\}$$

No. 9]

$$=b^{1/\hbar}h(a^{1/f}f)^{1-(1/\hbar)}n^{(1-(1/f))(1-(1/\hbar))}$$

$$\cdot\left\{1-\frac{h-1}{2}\left(\frac{N}{b}\right)^{-1/\hbar}+O(N^{-2/\hbar})+O(N^{-1/(f-1)})+O(N^{-1})\right\}$$

as $n \to \infty$. Now -2/h, -1 and -1/(f-1) < -1/h if f-1 < h. Hence $g(n) < b^{1/h} h(a^{1/f} f)^{1-(1/h)} n^{(1-(1/f))(1-(1/h))}$ for large n. Thus Theorem 5 follows from Theorem 4 and

Lemma 2. Theorem 5 is true if $f \ge h+1$.

Proof. Let q be a fixed constant such that

$$\frac{1}{2}f < q < f.$$

Suppose first that

(3) $m = [(n/a)^{1/f}] \ge \{(n/a) - q(n/a)^{1-(1/f)}\}^{1/f}.$ Then $n < am^f + b \left[\left(\frac{n - am^f}{b}\right)^{1/h} + 1 \right]^h$

$$\leq am^{f} + b \left\{ \left(\frac{n - am^{f}}{b} \right)^{1/h} + 1 \right\}^{h} \\ \leq n + b^{1/h} h \{qa(n/a)^{1 - (1/f)}\}^{1 - (1/h)} \{1 + o(1)\} \\ < n + b^{1/h} h (a^{1/f} f)^{1 - (1/h)} n^{(1 - (1/f))(1 - (1/h))}$$

for large *n*, since q < f. Hence the lemma follows if (3) be true. We therefore assume in the rest of the proof that (3) is false, i.e., that $(4) \qquad m = [(n/a)^{1/f}] < \{(n/a) - q(n/a)^{1-(1/f)}\}^{1/f} = M$, say.

Lemma 3. Let $f \ge h+1$, $P = a(M+1)^f - aM^f + b$

and

$$Q(n) = P - b\{(P/b)^{1/h} - 1\}^{h}$$
.

Then $Q(n) < b^{1/h} h(a^{1/f} f)^{1-(1/h)} n^{(1-(1/f))(1-(1/h))}$ for large n.

Proof. For large *n*,

$$M = (n/a)^{1/f} \{1 - (q/f)(n/a)^{-1/f} + o(n^{-1/f})\},$$

$$P = afM^{f-1} \{1 + \frac{1}{2}(f-1)M^{-1} + o(M^{-1})\}$$

$$= a^{1/f}fn^{1-(1/f)} \{1 - q\left(1 - \frac{1}{f}\right)\left(\frac{n}{a}\right)^{-1/f} + o(n^{-1/f})\}$$

$$\cdot \{1 + \frac{1}{2}(f-1)\left(\frac{n}{a}\right)^{-1/f} + o(n^{-1/f})\}$$

$$= a^{1/f}fn^{1-(1/f)} \{1 - \left(q - \frac{f}{2}\right)\left(1 - \frac{1}{f}\right)\left(\frac{n}{a}\right)^{-1/f} + o(n^{-1/f})\}$$

and

$$Q(n) = b^{1/h} h P^{(h-1)/h} \left\{ 1 - \frac{1}{2} (h-1) \left(\frac{P}{b} \right)^{-1/h} + o(P^{-1/h}) \right\}$$

$$< b^{1/h} h (a^{1/f} f)^{1 - (1/h)} n^{(1 - (1/f))(1 - (1/h))},$$

since q > (1/2)f.

Suppose now that

$$a(m+1)^f + b \leq n + Q(n).$$

Then Lemma 2 is clearly true. We therefore assume in the rest of the proof that

(5) $a(m+1)^{f}+b > n+Q(n).$

Since

$$n < am^{f} + b \left[\left(\frac{n - am^{f}}{b} \right)^{1/h} + 1 \right]^{h}$$

$$\leq am^{f} + b \left\{ \left(\frac{n - am^{f}}{b} \right)^{1/h} + 1 \right\}^{h},$$

Lemma 2 now follows from Lemma 3 and

Lemma 4. (4) and (5) imply that

$$am^{f}+b\left\{\left(\frac{n-am^{f}}{b}\right)^{1/h}+1\right\}^{h} < n+Q(n).$$

Proof. From (5),

 $\begin{array}{c} n - am^{f} < a(m+1)^{f} - am^{f} + b - Q(n). \\ \text{Clearly } (m+1)^{f} - m^{f} \text{ increases with } m. \quad \text{Hence, from (4),} \\ n - am^{f} < a(M+1)^{f} - aM^{f} + b - Q(n) \\ = P - Q(n) = b\{(P/b)^{1/h} - 1\}^{h}. \end{array}$

Hence

$$am^{f} + b\left\{\left(\frac{n-am^{f}}{b}\right)^{1/h} + 1\right\}^{h} = n + b\left\{\left(\frac{n-am^{f}}{b}\right)^{1/h} + 1\right\}^{h} - (n-am^{f}) < n + P - b\left\{\left(\frac{P}{b}\right)^{1/h} - 1\right\}^{h} = n + Q(n),$$

since $b\left\{\left(\frac{n-am^f}{b}\right)^{1/h}+1\right\}^h-(n-am^f)$ increases with $n-am^f$. This

completes the proof.

Remark 1. It is clear that in Theorem 5 we can replace the coefficient $b^{1/h}h(a^{1/f}f)^{1-(1/h)}$ of $n^{(1-(1/f))(1-(1/h))}$ by $a^{1/f}f(b^{1/h}h)^{1-(1/f)}$, obtaining an improvement only if $af^f < bh^h$.

3. Proof of Theorem 3. The case k=2 follows easily from Theorem 5. For k>2 we assume that $n \ge a_k$ and let $x_k = [(n/a_k)^{1/h_k}]$. If $n-a_k x_k^{h_k} \ge a_{k-1}$ we obtain Theorem 3, by induction on k, using the fact that

 $n-a_k x_k^{hk} \leq n-a_k \{(n/a_k)^{1/hk}-1\}^{hk} < h_k a_k (n/a_k)^{1-(1/hk)}$ for large *n*. Otherwise we obtain Theorem 3 using the fact that $a_1 + \cdots + a_{k-1} < cn^p$ for large *n*.

Remark 2. In the above proof we have not used the inequalities $a_1 h_1^{h_1} \leq \cdots \leq a_k h_k^{h_k}$ appearing in the statement of Theorem 3. If they are not all true we can improve the result by replacing c by a smaller constant C. This is seen as follows:

Let $a_i h_i^{h_i} > a_{i+1} h_{i+1}^{h_{i+1}}$ for some *i* satisfying $1 \le i \le k-1$. Clearly *c*

No. 9]

P. H. DIANANDA

can be replaced by C, obtained from c by interchanging a_i with a_{i+1} and h_i with h_{i+1} . It is not difficult to see that C < c since $a_i h_i^{h_i} > a_{i+1} h_{i+1}^{h_i+1}$.

I am indebted to Professor Mordell for communicating his result to me before the publication of his paper.

References

- [1] R. P. Bambah and S. Chowla: On numbers which can be expressed as a sum of two squares. Proc. Nat. Inst. Sci. India, **13**, 101-103 (1947).
- [2] P. H. Diananda: On integers expressible as a sum of two powers. Proc. Japan Acad., 42, 1111-1113 (1966).
- [3] —: On integers expressible as a sum of two powers. II. Proc. Japan Acad., 43, 417-419 (1967).
- [4] L. J. Mordell: On numbers which can be expressed as a sum of powers. Abhandlungen aus Zahlentheorie und Analysis, Berlin (1968) (to appear).
- [5] S. Uchiyama: On the distribution of integers representable as a sum of two h-th powers. J. Fac. Sci., Hokkaidô Univ., Ser. I, 18, 124-127 (1965).