227. Pseudo Quasi Metric Spaces

By Yong-Woon Kim
University of Alberta and Wisconsin State University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1968)

Introduction. Kelly [3] is the first one who studied the theory of bitopological space. A motivation for the study of bitopological spaces is to generalize the pseudo quasi metric space (which we denote as $p-q$ metric). In this paper one observes the relation between $p-q$ metric spaces and the bitopological spaces which are generated by them. In chapter 2 , one defines p-complete normal (i.e., pairwise complete normal) space and shows that $p-q$ metric space is p-complete normal. In the last chapter the $p-q$ metrisable problem is considered, and one of the Sion and Zelmer's result [4] is proved directly by a bitopological method. Throughout notations and definitions follow [2] and [3].

Definition. A $p-q$ metric on set X is a non-negative real valued function $p: X \times X \rightarrow R$ (reals) such that

$$
\begin{align*}
& p(x, x)=0 \tag{1}\\
& p(x, z) \leq p(x, y)+p(y, z) \text { for all } x, y, z \in X .
\end{align*}
$$

In addition, if p satisfies
(3) $p(x, y)=0$ only if $x=y$
then p is said to be a quasi metric. If p satisfies

$$
\begin{equation*}
p(x, y)=p(y, x) \tag{4}
\end{equation*}
$$

with (1) and (2) then p is a pseudo metric. Obviously, if (1), (2), (3), and (4) are satisfied then it is a metric in the usual sense.

Let p be a $p-q$ metric on X and let q be defined by $q(x, y)=p(y$, x). Then q is a $p-q$ metric on X and q is said to be the conjugate $p-q$ metric of p. We denote the bitopological space X generated by $\left\{S_{p}(x, \varepsilon)=\{y \mid p(x, y)<\varepsilon\}\right\}$ and $\left\{S_{q}(x, \varepsilon)=\{y \mid q(x, y)<\varepsilon\}\right\}$ as (X, P, Q) (see [3]). Throughout this paper (X, L_{1}, L_{2}) denotes a bitopological space with topology L_{1} and L_{2}.
(1-2) Definition (Kelly [3]). A bitopological space (X, L_{1}, L_{2}) is said to be p-normal (i.e., pairwise normal) if for any L_{1}-closed set A and L_{2}-closed set B with $A \cap B=\phi$, there exist an L_{2}-open U and an L_{1}-open set V such that $A \subset U, B \subset V$, and $U \cap V=\phi$.

Kelly [3] defined p-regular bitopological space in an analogous manner.
(1-3) Definition. Let (X, L_{1}, L_{2}) be a bitopological space,
(1) It is a $p-T_{1 \frac{1}{2}}$ iff for $x, y \in X, x \neq y$ there exist $U \in L_{1}$ and $V \in L_{2}$ such that either $x \in U, y \in V$ or $x \in V, y \in U$ and $U \cap V=\phi$.
(2) It is $p-T_{2}$ iff for $x, y \in X, x \neq y$ there exist $U \in L_{i}$ and $V \in L_{j}$ such that $i \neq j, i=1,2, x \in U, y \in V$ and $U \cap V=\phi$.
The definition of $p-T_{2}$ was given by Weston [5]. It is obvious from the definition that $p-T_{2}$ implies $p-T_{1}$. Further if (X, L_{1}, L_{2}) is a p $-T_{2}$ space the (X, L_{i}) is a T_{1}-space and if (X, L_{1}, L_{2}) is a $p-T_{1_{\frac{1}{2}}}$ space then (X, L_{i}) is a T_{0}-space for $i=1,2$.
(1-4) Definition. A $p-q$ metric p is called a $A-p-q$ metric (Albert $p-q$ metric [1]) if it satisfies the condition that $x \neq y$ implies either $p(x, y) \neq 0$ or $q(x, y) \neq 0$.

It is easy to prove the following
(1-5) Theorem. If (X, P, Q) is generated by the $A-p-q$ metric p and its conjugate metric q, respectively, then it is $p-T_{1}$.

Remark. Similarly, (X, P, Q) is $p-T_{2}$ iff it is quasi metric (see [3]).

The following is an example for $A-p-q$ metric.
(1-6) Example. Let X be the set of all reals and

$$
\begin{aligned}
p(x, y) & =|x-y| & & \text { if } x<y \\
& =0 & & \text { if otherwise }
\end{aligned}
$$

and $q(x, y)=p(y, x)$. Then (X, P, Q) is $p-T_{1 \frac{1}{2}}$ but it is not $p-T_{2}$. (1-7) Theorem (Kelly [3]). A $p-q$ metric (X, P, Q) is p-regular and p-normal.
2. In this chapter one defines p-complete normality and shows that a $p-q$ metric space (X, P, Q) is p-complete normal.
(2-1) Definition. In a bitopological space $\left(X, L_{1}, L_{2}\right)$ a pair (A, B), $A, B \subset X$ is said to be (12)-separated iff $\bar{A} \cap B=A \cap \overline{\bar{B}}=\phi$, where \bar{A} is the L_{1}-closure of A and $\overline{\bar{B}}$ is the L_{2}-closure of B.

Remark. If $L_{1} \subset L_{2}$ then (12)-separated implies L_{2}-separated.
(2-2) Definition. A bitopological space (X, L_{1}, L_{2}) is said to be p-completely normal iff for every (12)-separated pair (A, B) there exist an L_{2}-open set $U \supset A$ and an L_{1}-open set $V \supset B$ such that $U \cap V=\phi$.
(2-3) Theorem. A bitopological space $\left(X, L_{1}, L_{2}\right)$ is p-completely normal iff every subset of X is p-normal.

Proof. Suppose X is p-completely normal and $Y \subset X$. Let F_{1} and F_{2} be disjoint closed (relative to Y) in L_{1} and L_{2}, respectively. Then $F_{1} \cap \overline{\bar{F}}_{2}=\bar{F}_{1}^{L_{Y_{1}}} \cap \overline{\bar{F}}_{2}=Y \cap \bar{F}_{1} \cap \overline{\bar{F}}_{2}=\bar{F}_{1}^{L_{Y_{1}}} \cap \bar{F}_{2}^{L_{Y_{2}}}=F_{1} \cap F_{2}=\phi$. Where $\bar{F}^{L_{Y_{i}}}$ denotes the $L_{Y_{i}}$-closure of F. Similarly, we can show $\bar{F}_{1} \cap F_{2}=\phi$ which implies ($\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$) is a (12)-separated pair of X. By p-complete normality there exist disjoint sets L_{1}-open G_{1} and L_{2}-open G_{2} containing F_{2} and F_{1}, respectively. Then $Y \cap G_{1}$ and $Y \cap G_{2}$ are disjoint $L_{Y_{1}}, L_{Y_{2}}$ open sets of Y which contain F_{2} and F_{1}, so that Y is a p-normal space.

Conversely, let (A, B) be a (12)-separated pair, i.e.,

$$
(\bar{A} \cap B) \cup(A \cap \overline{\bar{B}})=\phi
$$

Let $Y=(\bar{A} \cap \overline{\bar{B}})^{c}$. Then $\left(Y, L_{Y_{1}}, L_{Y_{2}}\right)$ is a p-normal space by assumption since
$Y \cap \bar{A}=\left(\bar{A}^{c} \cup \overline{\bar{B}}^{c}\right) \cap \bar{A}=\overline{\bar{B}}^{c} \cap \bar{A}, \quad Y \cap \overline{\bar{B}}=\left(\bar{A}^{c} \cup \bar{B}^{c}\right) \cap \overline{\bar{B}}=\bar{A}^{c} \cap \overline{\bar{B}}$
then $Y \cap \bar{A}$ and $Y \cap \bar{B}$ are disjoint $L_{Y_{1}}$ and $L_{Y_{2}}$-closed sets, respectively. Therefore, there exist $U \cap Y=U_{Y} \in L_{Y_{1}}$ and $V \cap Y=V_{Y} \in L_{2}$ such that $(Y \cap \overline{\bar{B}}) \subset U_{Y}$ and $(Y \cap \bar{A}) \subset V_{Y}$, where $U_{Y} \cap V_{Y}=\phi$. But $U \cap(\bar{A} \cap \overline{\bar{B}})^{c}$ $=U \cap\left(\bar{A}^{c} \cup \bar{B}^{c}\right)$.

$$
U_{Y}=U \cap Y=\left(U \cap \overline{\bar{B}}^{c}\right) \cup\left(U \cap \bar{A}^{c}\right) \text { where } U \in L_{1},
$$

$$
V_{Y}=V \cap Y=\left(V \cap \overline{\bar{B}}^{c}\right) \cup\left(V \cap \bar{A}^{c}\right) \text { where } V \in L_{2} .
$$

Since $\left(U \cap \overline{\bar{B}}^{c}\right) \cap \overline{\bar{B}}=\phi$,

$$
U_{Y} \supset(Y \cap \overline{\bar{B}}) \text { implies }\left(U \cap \bar{A}^{c}\right) \supset(Y \cap \overline{\bar{B}}) .
$$

Similarly $V_{Y} \supset(Y \cap \bar{A})$ implies $\left(V \cap \overline{\bar{B}}^{c}\right) \supset(Y \cap \bar{A})$.
Now, $U^{\prime}=U \cap \bar{A}^{c} \in L_{1}$ and $V^{\prime}=V \cap \overline{\bar{B}}^{c} \in L_{2}$ and $U^{\prime} \cap V^{\prime}=\phi$. Consider

$$
Y \cap \overline{\bar{B}}=\left(\bar{A}^{c} \cup \overline{\bar{B}}^{c}\right) \cap \overline{\bar{B}}=A^{c} \cap \overline{\bar{B}}
$$

But $\bar{A} \cap B=\phi$ so that $\bar{A}^{c} \supset B$. Therefore

$$
\bar{A}^{c} \cap \overline{\bar{B}} \supset B \text { and } U^{\prime}=U \cap \bar{A}^{c} \supset(Y \cap \overline{\bar{B}})=\bar{A} \cap \overline{\bar{B}} \supset B
$$

Similarly,

$$
V^{\prime} \supset\left(\overline{\bar{B}}^{c} \cap \bar{A}\right) \supset A .
$$

(2-4) Lemma. Every subspace of a $p-q$ metric space (X, P, Q) is a $p-q$ metric space.
(2-5) Theorem. A $p-q$ metric space (X, P, Q) is p-completely normal.
Proof. By (1-7) a $p-q$ metric space is p-normal, and by the above lemma every subspace of a $p-q$ metric space is a $p-q$ metric space also, which implies that every subspace is p-normal. Apply (2-3) and the statement is proved.
3. In this chapter $p-q$ metrisable theorems are considered in the context of bitopological spaces and Sion and Zelmer's result [4] will be proved in a direct way. We start with a few lemmas which will be used in the sequel.
(3-1) Definition. In a bitopological space (X, L_{1}, L_{2}) a subset $C \subset X$ is said to be (12)-disjoint iff for each $x \in C$ and $y \in C^{c}$ there exist $U_{x} \in L_{1}$ and $V_{y} \in L_{2}$ such that $x \in U_{x}, y \in V_{y}$ and $U_{x} \cap V_{y}=\phi . \quad$ A set both (12)disjoint, (21)-disjointed is called p^{*}-disjoint.

Remark. In the example (1-6) every L_{2}-closed set is (12)-disjoint and every L_{1}-closed set is (21)-disjoint. If (X, L_{1}, L_{2}) is p-Hausdorff, then every subset of X is p^{*}-disjoint.
(3-2) Lemma. If a bitopological space (X, L_{1}, L_{2}) is L_{1}-regular and pregular then an L_{i}-closed set is (i, j)-disjoint $(i \neq j, i, j=1,2)$.

Proof. Case 1. Let C be an L_{2}-closed set and $x \notin C$. By p -
regularity there exist $U \in L_{2}, V \in L_{1}$ such that $C \subset V, x \in U$ and $V \cap U$ $=\phi$.

For any $y \in C, y \notin V^{c}$ and $x \in V^{c}$ where V^{c} is L_{1}-closed. By the regularity of L_{1} there exist $\alpha, \beta \in L_{1}$ such that

$$
B \supset V^{c}, y \in \alpha \text { and } \alpha \cap \beta=\phi
$$

Then $y \in \alpha \subset \beta^{c}$ and $x \notin \beta^{c}$. Again by p-regularity there exist $W \in L_{1}$, $R \in L_{2}$ such that $y \in \beta^{c} \subset R, x \in W$ and $R \cap W=\phi$ which implies C is (21)-disjoint.

Case 2. If C is L_{1}-closed. The proof is similar to case 1.
Sion and Zelmer [4] proved the following theorem which we prove directly by a bitopological method.
(3-3) Theorem. If $\left(X, L_{1}\right)$ is regular, compact, $p-q$ metric topological space, then it is pseudo metric space.

Proof. Let L_{2} be the topology which is generated by $\left\{S_{q}(x, \varepsilon)\right.$ $=\{y: q(x, y)=p(y, x)<\varepsilon\}\}$, where L_{1} is generated by the $p-q$ metric p. Then $\left(X, L_{1}, L_{2}\right)$ is a $p-q$ space (or $\left(X, L_{1}, L_{2}\right)=(X, P, Q)$).

Let $U \in L_{1}$ then U^{c} is compact in L_{1}. By the lemma (3-2) U^{c} is (12)-disjoint and the compactness of U^{c} implies U^{c} is L_{2}-closed and $U \in L_{2}$. Therefore $L_{1} \subset L_{2} . \quad d(x, y)=\max \{p(x, y), q(x, y)\}=q(x, y)$ implies L_{2} is a pseudo metric (by the symmetric property of q).

Similarly, we can show
(3-4) Corollary. If $\left(X, L_{1}\right)$ is a compact and quasi metric topological space, then it is a metric space.

Proof. (X, P, Q) is $p-T_{2}$ iff it is quasi metrisable (see the remark following (1-5)) and every subset is (ij)-disjoint. Apply a similar method as (3-3) to complete the proof.

References

[1] G. E. Albert: A note on quasi-metric space. Bull. Amer. Math. Soc., 47, 479 (1941).
[2] J. L. Kelley: General Topology. D. Van Nostrand, N. J. (1955).
[3] J. C. Kelly: Bitopological spaces. Proc. London Math. Soc., 13 (3), 71-89 (1963).
[4] M. Sion and G. Zelmer: On quasi-metrizability. Canadian Jour. Math., 19, 1243-1249 (1967).
[5] J. D. Weston: On comparison of topologies. Jour. London Math. Soc., 32, 342-354 (1957).
[6] W. A. Wilson: On quasi-metric spaces. Amer. Jour. Math., 53, 675-684 (1931).

