227. Pseudo Quasi Metric Spaces

By Yong-Woon KIM

University of Alberta and Wisconsin State University

(Comm. by Kinjirô KUNUGI, M. J. A., Dec. 12, 1968)

Introduction. Kelly [3] is the first one who studied the theory of bitopological space. A motivation for the study of bitopological spaces is to generalize the pseudo quasi metric space (which we denote as p-q metric). In this paper one observes the relation between p-q metric spaces and the bitopological spaces which are generated by them. In chapter 2, one defines p-complete normal (i.e., pairwise complete normal) space and shows that p-q metric space is p-complete normal. In the last chapter the p-q metricable problem is considered, and one of the Sion and Zelmer's result [4] is proved directly by a bitopological method. Throughout notations and definitions follow [2] and [3].

Definition. A p-q metric on set X is a non-negative real valued function $p: X \times X \rightarrow R$ (reals) such that

(1) p(x, x) = 0,

(2) $p(x,z) \le p(x,y) + p(y,z)$ for all $x, y, z \in X$.

In addition, if p satisfies

(3) p(x, y) = 0 only if x = y

then p is said to be a quasi metric. If p satisfies

(4) p(x, y) = p(y, x)

with (1) and (2) then p is a pseudo metric. Obviously, if (1), (2), (3), and (4) are satisfied then it is a metric in the usual sense.

Let p be a p-q metric on X and let q be defined by q(x, y) = p(y, x). Then q is a p-q metric on X and q is said to be the conjugate p-qmetric of p. We denote the bitopological space X generated by $\{S_p(x, \varepsilon) = \{y | p(x, y) < \varepsilon\}\}$ and $\{S_q(x, \varepsilon) = \{y | q(x, y) < \varepsilon\}\}$ as (X, P, Q) (see [3]). Throughout this paper (X, L_1, L_2) denotes a bitopological space with topology L_1 and L_2 .

(1-2) Definition (Kelly [3]). A bitopological space (X, L_1, L_2) is said to be *p*-normal (i.e., pairwise normal) if for any L_1 -closed set A and L_2 -closed set B with $A \cap B = \phi$, there exist an L_2 -open U and an L_1 -open set V such that $A \subset U$, $B \subset V$, and $U \cap V = \phi$.

Kelly [3] defined p-regular bitopological space in an analogous manner.

(1-3) Definition. Let (X, L_1, L_2) be a bitopological space,

(1) It is a $p-T_{1\frac{1}{2}}$ iff for $x, y \in X$, $x \neq y$ there exist $U \in L_1$ and $V \in L_2$ such that either $x \in U$, $y \in V$ or $x \in V$, $y \in U$ and $U \cap V = \phi$.

(2) It is $p-T_2$ iff for $x, y \in X$, $x \neq y$ there exist $U \in L_i$ and $V \in L_i$ such that $i \neq j$, $i=1, 2, x \in U$, $y \in V$ and $U \cap V = \phi$.

The definition of $p-T_2$ was given by Weston [5]. It is obvious from the definition that $p-T_2$ implies $p-T_1$. Further if (X, L_1, L_2) is a p $-T_2$ space the (X, L_i) is a T_1 -space and if (X, L_1, L_2) is a $p-T_{1\frac{1}{2}}$ space then (X, L_i) is a T_0 -space for i=1, 2.

(1-4) Definition. A p-q metric p is called a A-p-q metric (Albert p-q metric [1]) if it satisfies the condition that $x \neq y$ implies either $p(x, y) \neq 0$ or $q(x, y) \neq 0$.

It is easy to prove the following

(1-5) Theorem. If (X, P, Q) is generated by the A-p-q metric p and its conjugate metric q, respectively, then it is $p-T_1$.

Remark. Similarly, (X, P, Q) is $p-T_2$ iff it is quasi metric (see [3]).

The following is an example for A - p - q metric.

(1-6) Example. Let X be the set of all reals and

$$p(x, y) = |x - y|$$
 if $x < y$

=0 if otherwise

and q(x, y) = p(y, x). Then (X, P, Q) is $p - T_{1\frac{1}{2}}$ but it is not $p - T_2$. (1-7) Theorem (Kelly [3]). A p-q metric (X, P, Q) is p-regular and p-normal.

2. In this chapter one defines *p*-complete normality and shows that a p-q metric space (X, P, Q) is *p*-complete normal.

(2-1) Definition. In a bitopological space (X, L_1, L_2) a pair (A, B), $A, B \subset X$ is said to be (12)-separated iff $\overline{A} \cap B = A \cap \overline{B} = \phi$, where \overline{A} is the L_1 -closure of A and \overline{B} is the L_2 -closure of B.

Remark. If $L_1 \subset L_2$ then (12)-separated implies L_2 -separated. (2-2) Definition. A bitopological space (X, L_1, L_2) is said to be *p*-completely normal iff for every (12)-separated pair (A, B) there exist an L_2 -open set $U \supset A$ and an L_1 -open set $V \supset B$ such that $U \cap V = \phi$.

(2-3) Theorem. A bitopological space (X, L_1, L_2) is p-completely normal iff every subset of X is p-normal.

Proof. Suppose X is p-completely normal and $Y \subset X$. Let F_1 and F_2 be disjoint closed (relative to Y) in L_1 and L_2 , respectively. Then $F_1 \cap \overline{F}_2 = \overline{F}_1^{L_{Y_1}} \cap \overline{F}_2 = Y \cap \overline{F}_1 \cap \overline{F}_2 = \overline{F}_1^{L_{Y_1}} \cap \overline{F}_2^{L_{Y_2}} = F_1 \cap F_2 = \phi$. Where $\overline{F}^{L_{Y_i}}$ denotes the L_{Y_i} -closure of F. Similarly, we can show $\overline{F}_1 \cap F_2 = \phi$ which implies (F_1, F_2) is a (12)-separated pair of X. By p-complete normality there exist disjoint sets L_1 -open G_1 and L_2 -open G_2 containing F_2 and F_1 , respectively. Then $Y \cap G_1$ and $Y \cap G_2$ are disjoint L_{Y_1}, L_{Y_2} open sets of Y which contain F_2 and F_1 , so that Y is a p-normal space.

1010

Conversely, let (A, B) be a (12)-separated pair, i.e.,

 $(\bar{A} \cap B) \cup (A \cap \bar{B}) = \phi.$

Let $Y = (\bar{A} \cap \bar{B})^c$. Then (Y, L_{Y_1}, L_{Y_2}) is a *p*-normal space by assumption since

 $\begin{array}{ll} Y \cap \bar{A} = (\bar{A}^c \cup \bar{B}^c) \cap \bar{A} = \bar{B}^c \cap \bar{A}, & Y \cap \bar{B} = (\bar{A}^c \cup \bar{B}^c) \cap \bar{B} = \bar{A}^c \cap \bar{B} \\ \text{then } Y \cap \bar{A} \text{ and } Y \cap \bar{B} \text{ are disjoint } L_{Y_1} \text{ and } L_{Y_2} \text{-closed sets, respectively.} \\ \text{Therefore, there exist } U \cap Y = U_Y \in L_{Y_1} \text{ and } V \cap Y = V_Y \in L_2 \text{ such that } \\ (Y \cap \bar{B}) \subset U_Y \text{ and } (Y \cap \bar{A}) \subset V_Y, \text{ where } U_Y \cap V_Y = \phi. \quad \text{But } U \cap (\bar{A} \cap \bar{B})^c \\ = U \cap (\bar{A}^c \cup \bar{B}^c). \end{array}$

$$U_{Y} = U \cap Y = (U \cap \overline{B}^{c}) \cup (U \cap \overline{A}^{c}) \text{ where } U \in L_{1},$$

$$V_{Y} = V \cap Y = (V \cap \overline{B}^{c}) \cup (V \cap \overline{A}^{c}) \text{ where } V \in L_{2}.$$

Since $(U \cap \overline{\bar{B}}{}^c) \cap \overline{\bar{B}} = \phi$,

$$U_Y \supset (Y \cap \overline{B}) ext{ implies } (U \cap \overline{A}^c) \supset (Y \cap \overline{B}).$$

Similarly $V_Y \supset (Y \cap \overline{A})$ implies $(V \cap \overline{B}^c) \supset (Y \cap \overline{A})$.

Now, $U' = U \cap \bar{A}^c \in L_1$ and $V' = V \cap \bar{\bar{B}}^c \in L_2$ and $U' \cap V' = \phi$. Consider $Y \cap \bar{\bar{B}} = (\bar{A}^c \cup \bar{\bar{B}}^c) \cap \bar{\bar{B}} = A^c \cap \bar{\bar{B}}$.

But
$$\bar{A} \cap B = \phi$$
 so that $\bar{A}^c \supset B$. Therefore

 $\bar{A^c} \cap \bar{B} \supset B \text{ and } U' = U \cap \bar{A^c} \supset (Y \cap \bar{B}) = \bar{A} \cap \bar{B} \supset B.$

Similarly,

$$V' \supset (\overline{\bar{B}}^c \cap \overline{A}) \supset A.$$

(2-4) Lemma. Every subspace of a p-q metric space (X, P, Q) is a p-q metric space.

(2-5) Theorem. A p-q metric space (X, P, Q) is p-completely normal.

Proof. By (1-7) a p-q metric space is *p*-normal, and by the above lemma every subspace of a p-q metric space is a p-q metric space also, which implies that every subspace is *p*-normal. Apply (2-3) and the statement is proved.

3. In this chapter p-q metrisable theorems are considered in the context of bitopological spaces and Sion and Zelmer's result [4] will be proved in a direct way. We start with a few lemmas which will be used in the sequel.

(3-1) Definition. In a bitopological space (X, L_1, L_2) a subset $C \subset X$ is said to be (12)-disjoint iff for each $x \in C$ and $y \in C^c$ there exist $U_x \in L_1$ and $V_y \in L_2$ such that $x \in U_x$, $y \in V_y$ and $U_x \cap V_y = \phi$. A set both (12)-disjoint, (21)-disjointed is called p^* -disjoint.

Remark. In the example (1-6) every L_2 -closed set is (12)-disjoint and every L_1 -closed set is (21)-disjoint. If (X, L_1, L_2) is *p*-Hausdorff, then every subset of X is *p**-disjoint.

(3-2) Lemma. If a bitopological space (X, L_1, L_2) is L_1 -regular and p-regular then an L_i -closed set is (i, j)-disjoint $(i \neq j, i, j = 1, 2)$.

Proof. Case 1. Let C be an L_2 -closed set and $x \notin C$. By p-

[Vol. 44,

regularity there exist $U \in L_2$, $V \in L_1$ such that $C \subset V$, $x \in U$ and $V \cap U = \phi$.

For any $y \in C$, $y \notin V^c$ and $x \in V^c$ where V^c is L_1 -closed. By the regularity of L_1 there exist $\alpha, \beta \in L_1$ such that

 $B \supset V^c$, $y \in \alpha$ and $\alpha \cap \beta = \phi$.

Then $y \in \alpha \subset \beta^c$ and $x \notin \beta^c$. Again by *p*-regularity there exist $W \in L_1$, $R \in L_2$ such that $y \in \beta^c \subset R$, $x \in W$ and $R \cap W = \phi$ which implies C is (21)-disjoint.

Case 2. If C is L_1 -closed. The proof is similar to case 1.

Sion and Zelmer [4] proved the following theorem which we prove directly by a bitopological method.

(3-3) Theorem. If (X, L_1) is regular, compact, p-q metric topological space, then it is pseudo metric space.

Proof. Let L_2 be the topology which is generated by $\{S_q(x,\varepsilon) = \{y: q(x,y) = p(y,x) < \varepsilon\}\}$, where L_1 is generated by the p-q metric p. Then (X, L_1, L_2) is a p-q space (or $(X, L_1, L_2) = (X, P, Q)$).

Let $U \in L_1$ then U^c is compact in L_1 . By the lemma (3-2) U^c is (12)-disjoint and the compactness of U^c implies U^c is L_2 -closed and $U \in L_2$. Therefore $L_1 \subset L_2$. $d(x, y) = \max \{p(x, y), q(x, y)\} = q(x, y)$ implies L_2 is a pseudo metric (by the symmetric property of q).

Similarly, we can show

(3-4) Corollary. If (X, L_1) is a compact and quasi metric topological space, then it is a metric space.

Proof. (X, P, Q) is $p-T_2$ iff it is quasi metrisable (see the remark following (1-5)) and every subset is (ij)-disjoint. Apply a similar method as (3-3) to complete the proof.

References

- G. E. Albert: A note on quasi-metric space. Bull. Amer. Math. Soc., 47, 479 (1941).
- [2] J. L. Kelley: General Topology. D. Van Nostrand, N. J. (1955).
- [3] J. C. Kelly: Bitopological spaces. Proc. London Math. Soc., 13 (3), 71-89 (1963).
- [4] M. Sion and G. Zelmer: On quasi-metrizability. Canadian Jour. Math., 19, 1243-1249 (1967).
- [5] J. D. Weston: On comparison of topologies. Jour. London Math. Soc., 32, 342-354 (1957).
- [6] W. A. Wilson: On quasi-metric spaces. Amer. Jour. Math., 53, 675-684 (1931).