74. Boundedness of Solutions to Nonlinear Equations in Hilbert Space

By Athanassios G. Kartsatos ${ }^{1)}$
Department of Mathematics, University of Athens, Greece
(Comm. by Zyoiti Suetuna, m. J. A., May 12, 1969)

In what follows, by $H=(H,\langle\rangle$,$) we denote a complex Hilbert$ space, and by $B=B(H, H)$, the space of all bounded linear operators from H into H, associated with the strong operator topology. The only topology that we consider on H is the strong one.

Our aim in this paper is to give a boundedness theorem for the solutions of the differential equation

$$
\begin{equation*}
\dot{x}=A(t) x+f(t, x), \tag{*}
\end{equation*}
$$

where $x: I \rightarrow H, I=\left[t_{0},+\infty\right), t_{0} \geq 0$, is a differentiable function on I with continuous first derivative, ${ }^{2)} A: I \rightarrow B$ is a continuous function on I, and $f: I \times H \rightarrow H$ is also continuous on $I \times H$.

1. Theorem 1. Consider (*) under the following assumptions:
(i) there exists an operator valued function $Q: I \rightarrow B$ continuous and such that:
(i_{1})

$$
\dot{Q}(t)+Q(t) A(t)+A^{*}(t) Q(t)=0,^{3)} \quad t \in I,
$$

and

$$
\text { (} \left.\mathrm{i}_{2}\right) \quad|\langle Q(t) x, x\rangle| \geq g(\|x\|), \quad(t, x) \in I \times H,
$$

where $g: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}=[0,+\infty)$ is continuous and $\lim _{y \rightarrow+\infty} \sup g(y)=+\infty$;
(ii) $\|x\| \cdot\|f(t, x)\| \leq p(t) g(\|x\|)$, with $p: I \rightarrow \boldsymbol{R}_{+}$continuous and such that

$$
\int_{t_{0}}^{\infty} p(t)\|Q(t)\| d t<+\infty ;
$$

then, if $x(t), t \in I$, is a solution of (*), it is bounded, i.e. there exists a constant $k>0$ such that $\|x(t)\| \leq k$ for every $t \in I$.

Proof. By differentiation of the function
(1)

$$
V(t)=\langle Q(t) x(t), x(t)\rangle,
$$

we have

$$
\begin{align*}
\dot{V}(t)= & \langle\dot{Q}(t) x(t)+Q(t) \dot{x}(t), x(t)\rangle+\langle Q(t) x(t), \dot{x}(t)\rangle \\
= & \langle\dot{Q}(t) x(t)+Q(t) A(t) x(t)+Q(t) f(t, x(t)), x(x)\rangle \\
& +\langle Q(t) x(t), A(t) x(t)+f(t, x(t))\rangle \\
= & \left.\left\langle\dot{Q}(t)+Q(t) A(t)+A^{*}(t) Q(t)\right) x(t), x(t)\right\rangle \\
& +\langle Q(t) f(t, x(t)), x(t))\rangle+\langle Q(t) x(t), f(t, x(t))\rangle
\end{align*}
$$

and by integration from t_{0} to $t\left(t_{0} \leq t\right)$, we have

1) This research was supported in part by a NATO grant.
2) The existence of solutions on I is assumed without further mention.
3) $A^{*}(t)$ is the adjoint of the operator $A(t)$.

$$
\begin{equation*}
V(t)=V\left(t_{0}\right)+\int_{t_{0}}^{t}[\langle Q(s) f(s, x(s)), x(s)\rangle+\langle Q(s) x(s), f(s, x(s))\rangle] . \tag{3}
\end{equation*}
$$

From (3) it follows that

$$
\begin{align*}
g(\|x(t)\|) & \leq|V(t)| \leq\left|V\left(t_{0}\right)\right|+2 \int_{t_{0}}^{t}\|Q(s)\| \cdot\|f(s, x(s))\| \cdot\|x(s)\| d s \tag{4}\\
& \leq\left|V\left(t_{0}\right)\right|+2 \int_{t_{0}}^{t} p(s)\|Q(s)\| g(\|x(s)\|) d s
\end{align*}
$$

which, by a well known inequality, gives

$$
\begin{equation*}
g(\|x(t)\|) \leq\left|V\left(t_{0}\right)\right| \exp \left\{2 \int_{t_{0}}^{t} p(s)\|Q(s)\| d s\right\} \tag{5}
\end{equation*}
$$

and this proves the theorem.
Remark 1. If $g(\|x\|)=\lambda\|x\|^{2}$ (λ constant), then the condition (i_{1}) can be replaced by the following :
(i_{3})

$$
\int_{t_{0}}^{\infty}\left\|\dot{Q}(t)+Q(t) A(t)+A^{*}(t) Q(t)\right\| d t<+\infty
$$

In fact, in this case from (2) we obtain

$$
\begin{aligned}
\lambda\|x(t)\|^{2} \leq|V(t)| \leq\left|V\left(t_{0}\right)\right| & +\int_{t_{0}}^{t}\left\|\dot{Q}(s)+Q(s) A(s)+A^{*}(s) Q(s)\right\| \cdot\|x(s)\|^{2} d s \\
& +2 \lambda \int_{t_{0}}^{t} p(s)\|Q(s)\| \cdot\|x(s)\|^{2} d s
\end{aligned}
$$

and the proof follows as in Theorem 1.
Remark 2. Theorem 1 contains partially as a special case a result of Schaeffer in [1], who considered the linear equation
(**)

$$
\dot{x}=A(t) x
$$

where $A(t)$ is an $n \times n$ (complex) matrix function, and x an $n \times n$ (complex) vector.
2. Theorem 2. Suppose that in (*) the assumptions (i) are satisfied along with the following:
(ii $\left.a_{a}\right) \quad\left\|x_{1}-x_{2}\right\| \cdot\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\| \leq \mu(t) g\left(x_{1}-x_{2}\right)$
for every $\left(t, x_{1}, x_{2}\right) \in I \times H \times H$, where g is as in $\left(\mathrm{i}_{2}\right)$ of Theorem 1 , and $\mu: I \rightarrow \boldsymbol{R}_{+}$is a continuous function such that

$$
\int_{t_{0}}^{\infty} \mu(t)\|Q(t)\| d t<+\infty ;
$$

then if $(*)$ has a bounded solution $y(t)$, every solution of (*) is bounded.
Proof. Suppose that $x(t)$ is any solution of (*); then for the difference $x(t)-y(t)$ we have
(6) $\quad x(t)-y(t)=A(t)(x(t)-y(t))+(f(t, x(t))-f(t, y(t)))$;
by differentiation of the function
(7)

$$
V_{0}(t)=\langle Q(t)(x(t)-y(t)), x(t)-y(t)\rangle
$$

and proceeding as in Theorem 1, we finally find

$$
\begin{equation*}
g(\|x(t)-y(t)\|) \leq\left|V_{0}(t)\right| \leq\left|V_{0}\left(t_{0}\right)\right| \exp \left\{2 \int_{t_{0}}^{t} \mu(s)\|Q(s)\| d s\right\} \tag{8}
\end{equation*}
$$

thus

$$
\begin{equation*}
\|x(t)\|-\|y(t)\| \leq\|x(t)-y(t)\| \leq K \quad \text { for every } t \in I \tag{9}
\end{equation*}
$$

and for some positive constant K.
Obviously, since $y(t)$ is bounded, our assertion is true.

Reference

[1] A. J. Schaeffer: Boundedness of solutions to linear differential equations. Bull. Amer. Math. Soc., 74, 508-511 (1968).

