134. Propagation of Chaos for Certain Markov Processes of Jump Type with Nonlinear Generators. II

By Hiroshi TANAKA

University of Tokyo

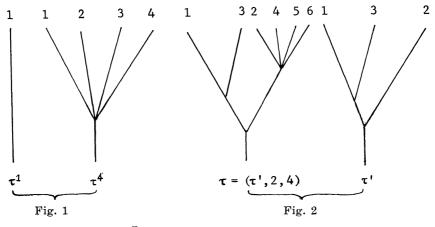
(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1969)

This is a continuation of the previous paper [3], and treats a generalization of Wild's sum for $\{H_p^t\}$ and the propagation of chaos for the nonlinear equation (1.1). All the notations are preserved; §§1, 2 and numbered formulas which are quoted here are in [3].

3. A generalization of Wild's sum. The expression (2.1) defining the linear semigroup $\{H_p^i\}$ associated with the equation (1.1) leads naturally to a generalization of Wild's sum [1] as will be explained here. Denote by τ^k , $k \ge 1$, the tree with only one branching point which is k-fold, and give a number j $(1 \le j \le k)$ to each extreme point (or top) of the tree τ^k as in Fig. 1. We define the set T_n , $n \ge 1$, of trees with n extreme points and also the numbering to extreme points of each tree in T_n , inductively as follows.

i) $T_1 = \{\tau^1\}, T_2 = \{\tau^2\}.$

ii) $\tau \in T_n$, $n \ge 2$, is either a) $\tau = \tau^n$ or b) $\tau = (\tau', i, j)$ with $\tau' \in T_{n-j+1}$, $1 \le i \le n-j+1$, $2 \le j \le n$, where (τ', i, j) denotes the tree which is obtained by connecting τ^j at the *i*-th top of τ' . In particular, $(\tau^1, 1, n)$ is τ^n itself. In the case $\tau = (\tau', i, j)$, those extreme points of τ which are also extreme points of τ^j have the numbers $i, n-j+2, n-j+3, \cdots, n$, while other extreme points of τ have the same numbers as τ' (see Fig. 2).



Next, we set $T = \bigcup_{n=1}^{\infty} T_n$, $N(\tau) = n$ for $\tau \in T_n$, and $T'_1 = T$,

 $T'_{k} = \{ \tau \in T ; \text{ the first branching point is } k \text{-fold} \}, k \ge 2.$

For each $p=0, 1, \dots, \tau \in T'_k$, $\varphi \in \Phi^k$, we define $\tau_p(\varphi) \in \Phi^{N(\tau)}$ as follows: 1) if $\tau = \tau^k$, $\tau_p(\varphi) = \varphi$

2) if $\tau = (\tau', i, j), \quad 1 \le i \le m = N(\tau'), \quad j \ge 2$, then $\tau_p(\varphi) = \begin{cases} \Pi_{j-p-1}(x_i, x_{m+p+1}, \cdots, x_{m+j-1}, \tau'_p(\varphi)), & j \ge p+2\\ 0, & j < p+2. \end{cases}$

Let $\mathbf{M}_p = \{\tau(t), P_p^r(\cdot), \tau \in T\}$ be a minimal Markov process with state space T such that a particle starting at τ waits there during exponential holding time with expectation $\frac{1}{nq} (n=N(\tau))$ and then jumps to the

state (τ, i, j) with probability q_{j-p-1}/nq , $1 \le i \le n$, $j \ge p+2$. Then, the semigroup $\{H_p^t\}$ of §2 is expressed in terms of the Markov process \mathbf{M}_p . In fact, we can prove the following theorem, by considering the forward equation for \mathbf{M}_p and the backward equation for the Markov process on \mathbf{Q} determined by $\{\mathbf{H}_p^t\}$.

Theorem 2. For each
$$p \ge 0$$
, $\varphi \in \Phi^k$, $1 \le k \le n$,
 $(\mathbf{H}_p^t \varphi)_n = \sum_{\tau \in \mathcal{T}_k^t \cap \mathcal{T}_n} P_p^{\tau k} \{ \tau(t) = \tau \} \tau_p(\varphi),$

where $(\varphi)_n = \varphi$ for n = k, and = 0 for $n \neq k$. Therefore, under the assumption (A),

$$H_p^t \hat{\varphi} = \theta_p \sum_{n=k}^{\infty} \sum_{\tau \in T_k^{\prime} \cap T_n} P_p^{\tau k} \{ \tau(t) = \tau \} \tau_p(\varphi)$$

for $\hat{\varphi} = \theta_p \varphi$, $\varphi \in \Phi^k$.

As a corollary to this theorem, we can obtain similar formulas to Wild's sum [1] for the solution u(t) of (1.1) and for the transition function $\{P_f(t, x, \Gamma)\}$. The first one was also obtained by S. Tanaka [2] by a different method. For each $\tau \in T$, $f_1, \dots, f_n \in \mathcal{P}$ $(n=N(\tau))$, we define $\tau[f_1, \dots, f_n] \in \mathcal{P}$ as follows: i) if $\tau = \tau^1$, $\tau[f] = f$, ii) if $\tau = \tau^n$ $(n \ge 2)$, then $\tau[f_1, \dots, f_n] = \langle f_1 \otimes \dots \otimes f_n, \Pi_{n-1}(x_1, x_2, \dots, x_n, \cdot) \rangle$, and iii) if $\tau = (\tau', i, j)$, then

 $\tau[f_1, \dots, f_n] = \tau'[\dots, f_{i-1}, \tau^j[f_i, f_{n-j+2}, \dots, f_n], f_{i+1}, \dots, f_{n-j}].$ Corollary 1. (a) Let u(t) be the solution of (1.1). Then,

$$u(t) = \sum_{n=1}^{\infty} \sum_{\tau \in T_n} P_0^{\tau_1} \{\tau(t) = \tau\} \tau[f, \cdots, f]$$

(b) $P_f(t, x, \cdot) = \sum_{n=1}^{\infty} \sum_{\tau \in T_n} P_0^{\tau_1} \{\tau(t) = \tau\} \tau[\delta_x, f, \cdots, f]$

where δ_x is the probability measure concentrated at x.

4. Propagation of chaos. Let $D_{p,n}$, for each $p=0, 1, \dots$, be a linear operator from $\hat{\Phi}_p^n$ into itself defined by

$$D_{p,n}\hat{\varphi} = \theta_p \sum_{N=1}^{n-1} n^{-N} \sum_{i,i_1,\dots,i_N}^{(n)} A_N^{(x_{i_1},\dots,x_{i_N})}(x_i,\varphi)$$

where $\hat{\varphi} = \theta_{p} \varphi$, $\varphi \in \Phi^{n}$, and $\sum_{i,i_{1},\dots,i_{N}}^{(n)}$ is the same as in §1. Then, it

turns out that $D_{p,n}$ is a bounded operator on the Banach space $\hat{\Psi}_p^n$, and hence there exists a semigroup $\{H_{p,n}^t\}$ on $\hat{\Psi}_p^n$ with generator $D_{p,n}$. On the other hand, the method of §2 can be adapted with some modifications to obtain an expression for $\{H_{p,n}^t\}$ which is similar to (2.1), and with the aid of this the following convergence theorem is proved.

Theorem 3. Under the assumption (A),

 $\lim H^t_{p,n} \hat{arphi} = H^t_p \hat{arphi} \qquad for \; \hat{arphi} \in \hat{\varPhi}^\infty_p.$

This theorem together with the multiplicative property of $\{H_0^t\}$ implies the following propagation of chaos.

Corollary 2. Under the assumption (A),

im
$$\langle u_n(t), \varphi \rangle = \langle u(t)^m, \varphi \rangle, \varphi \in \Phi^m$$
,

where u(t) is the solution of (1.2) and in the left hand side φ is considered as a function on \mathbf{Q}^n .

References

- E. Wild: On Boltzmann's equations in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47, 602-609 (1951).
- [2] S. Tanaka: An extension of Wild's sum for solving certain non-linear equation of measures. Proc. Japan Acad., 44, 884-889 (1968).
- [3] H. Tanaka: Propagation of chaos for certain Markov processes of jump type with nonlinear generators. I. Proc. Japan Acad., 45, 449-452 (1969).