133. On Conservativity of Algebraic Function Fields

By Tetsuzo KIMURA Nippon Kogyo Daigaku

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1969)

1. Let K be a field of algebraic functions of one variable over a field k of characteristic $p \neq 0$. Throughout this note, we assume that K is separable over k and k is algebraically closed in K. If the genus of K/k is invariant under any constant field extension of K/k, we say that K/k is conservative. E. Artin has proved that K/k is conservative if and only if for all finite purely inseparable constant field extensions \tilde{K}/\tilde{k} of K/k, the genus of K/k is equal to the genus of \tilde{K}/\tilde{k} (Chapter 15 of [1]).

Let K/k be as above, $M = \bigcup_{i=1}^{n} M_i$ a complete normal model of K/k, where M_1, \dots, M_n are affine models defined by affine k-algebras A_1, \dots, A_n respectively. Furthermore, we assume that each A_i is isomorphic to $k[X_{i1}, \dots, X_{il_i}]/\mathfrak{a}_i$, where $k[X_{i1}, \dots, X_{il_i}]$ is a polynomial ring and \mathfrak{a}_i is a prime ideal of $k[X_{i1}, \dots, X_{il_i}]$. In this note, we fix a normal complete model M and a set of equations for M, i.e., the union $\bigcup_{i=1}^{n} B_i$ where $B_i = \{F_{i1}(X), \dots, F_{is_i}(X)\}$ is a basis of \mathfrak{a}_i . Let \mathcal{Q} be the set of all coefficients in the equations belonging to the set of equations for $M, \mathcal{A} = \{a_1, a_2, \dots, a_m\}$ a p-basis of $k^p(\mathcal{Q})$ over k^p and let $\mathcal{A}^{p-1} = \{a_1^{p-1}, a_2^{p-1}, \dots, a_m^{p-1}\}$. Then we have the following:

Theorem. K/k is conservative if and only if the genus of K/k is equal to the genus of $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$.

Remark. (1) We say that an algebraic function field \tilde{K}/\tilde{k} is a constant field extension of K/k if $\tilde{K} = \tilde{k}K$ and K is free from \tilde{k} over k. If we choose the above $a_i^{p^{-1}}(i=1, 2, \dots, m)$ from a fixed complete field k^* which contains k, then we can construct the constant field extension $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$ of K/k by the method of Chevalley [2].

(2) Let M and A_i $(i=1, 2, \dots, m)$ be as stated above. Then the model of $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$ defined by $k(\Delta^{p^{-1}})[A_i]$ $(i=1, 2, \dots, n)$ is denoted by $M \otimes k(\Delta^{p^{-1}})$ (to prove Theorem, we shall consider this model $M \otimes k(\Delta^{p^{-1}})$ as a model over k). The geometric genus of M (resp. $M \otimes k(\Delta^{p^{-1}})$) is equal to the genus of K/k (resp. $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$) (cf. §6 of [4]).

(3) By a differential constant field for M (or K/k), we mean a field k_0 which satisfies the following three conditions:

(i) $k \supseteq k_0 \supseteq k^p$, $[k:k_0] < \infty$,

(ii) K^p and k_0 are linearly disjoint over k^p ,

(iii) for any valuation ring R_{p} of K, the differential module $M(R_{p}/k_{0})$ of R_{p} over k_{0} is a free R_{p} -module (cf. [5]). If k itself is a differential constant field for K/k, then K/k is conservative by Theorem 4 of [5] (cf. Chapter III of [3] and Lemma 3 of [7]).

By making use of Remark 3 and Lemma (see § 2), we shall prove the above Theorem and some corollaries in § 3.

The author wishes to express his sincere gratitude to Professor Y. Kawahara for his precious advices and constant encouragement.

2. Lemma. Let K/k, $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$, M and $M \otimes k(\Delta^{p^{-1}})$ be as stated above. If the genus of K/k and the genus of $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$ are equal to each other, then $M \otimes k(\Delta^{p^{-1}})$ is also normal.

Proof. Let R_n be the valuation ring belonging to a prime divisor \mathfrak{p} of K/k and $S_{\mathfrak{R}}$ be the valuation ring of $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$ which lies above R_{y} . If the genus of K/k and the genus of $K(\Delta^{p-1})/k(\Delta^{p-1})$ are equal to each other, then by Theorem 20 of Chapter 15 of [1], we have $S_{\mathfrak{B}} = R_{\mathfrak{p}} \cdot k(\Delta^{p^{-1}})$. Since $k(\Delta^{p^{-1}})$ is a purely inseparable extension of k, $S_{\mathfrak{Y}}^{\mathsf{r}} = R_{\mathfrak{y}}^{\mathsf{r}} \cdot k(\Delta^{p^{-1}})$ is the unique valuation ring of $K(\Delta^{p^{-1}})$ lying above $R_{\mathfrak{y}}$. Let A be one of the defining affine k-algebras of M and let V(K) be the set of all valuation rings of K which contain A. Then the set $V(K(\Delta^{p^{-1}}))$ of all valuation rings of $K(\Delta^{p^{-1}})$ which contain $k(\Delta^{p^{-1}})[A]$ is equal to the set of all valuation rings of $K(\Delta^{p^{-1}})$ which lie above an Since M is normal, the intersection of all elements element in V(K). in V(K) is A. To prove Lemma, it is sufficient that the intersection of all elements in $V(K(\Delta^{p^{-1}}))$ is $k(\Delta^{p^{-1}})[A]$. Let c be an element of the intersection of all elements in $V(K(\Delta^{p^{-1}}))$. Then c is written in the form $c = \sum_{i=1}^{s} b_i w_i$ where $\{w_1, w_2, \dots, w_s\}$ is a linear basis of $k(\Delta^{p-1})$ over k and b_i $(i=1, 2, \dots, s)$ are elements in K. Since any element in $V(K(\varDelta^{p^{-1}}))$ is of the form $\stackrel{\circ}{\underset{i=1}{\oplus}} R_{\mathfrak{p}}[w_i]$ (direct) where $R_{\mathfrak{p}} \in V(K)$ and since K is linearly disjoint from $k(\Delta^{p^{-1}})$ over k, b_i $(i=1,2,\ldots,s)$ are contained in A. Therefore, we have $c \in k(\Delta^{p^{-1}})[A]$. It is obvious that the intersection of all elements in $V(K(\Delta^{p^{-1}}))$ contains $k(\Delta^{p^{-1}})[A]$. That is, the intersection of all elements in $V(K(\Delta^{p^{-1}}))$ is $k(\Delta^{p^{-1}})[A]$.

3. Proof of Theorem. Assume that K/k and $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$ have the same genus. Then, the set of equations for M is also a set of equations for $M \otimes k(\Delta^{p^{-1}})$ over k by the proof of Lemma. From this fact, $k_0 = k(\alpha_i, i \in I)$ where $(\alpha_i, i \in I)$ is a p-basis of k over $k^p(\Omega)$ is a common differential constant field for M and $M \otimes k(\Delta^{p^{-1}})$, the latter being considered as a model of $K(\Delta^{p^{-1}})/k$ (cf. Lemma 5 of [4] and Remark 3 of [6]). Furthermore, $\Delta = \{a_1, a_2, \dots, a_m\}$ is a p-basis of k

596

over k_0 . Since $M(S_{\Re}/k_0)$ is a free S_{\Re} -module,

 $k_0[S^p_{\mathfrak{P}}] = S_{\mathfrak{P}} \cap k_0 \cdot K^p(\varDelta) = R_p \cap k \cdot K^p$ by Theorem 1 of [5]. On the other hand, we have

 $k_0[S_{\mathfrak{B}}^p] = k_0[k^p(\Delta)[R_{\mathfrak{p}}^p]] = k[R_{\mathfrak{p}}^p].$

Then $k[R_{\mathfrak{p}}^{p}] = R_{\mathfrak{p}} \cap k \cdot K^{p}$ and $M(R_{\mathfrak{p}}/k)$ is a free $R_{\mathfrak{p}}$ -module by Theorem 1 of [5]. Since K is separably generated over k, K^{p} and k are linearly disjoint over k^{p} . Therefore, k itself is a differential constant field for M. Hence K/k is conservative. The converse is obvious.

Corollary 1. If there exists a normal complete model of K/k which is defined over k^p , then K/k is conservative.

Corollary 2. K/k is conservative if and only if K/k and kK^p/k have the same genus.

Proof. If K/k is conservative, K^p/k^p is conservative. Because, K/k and K^p/k^p are isomorphic and have the same genus. Since kK^p/k is a constant field extension of K^p/k^p , the genus of K/k is equal to the genus of kK^p/k . Conversely, if the genus of K/k is equal to the genus of kK^p/k , K^p/k^p and kK^p/k have the same genus. Hence K^p/k^p is conservative by Theorem, i.e. K/k is conservative.

References

- E. Artin: Algebraic Numbers and Algebraic Functions. I. Princeton Uuiversity (1950).
- [2] C. Chevalley: Introduction to the Theory of Algebraic Function of One Variable. Mathematical Surveys, No. 6, New York (1951).
- [3] M. Eichler: Einfuhrung in die Theorie der algebraischen Zahlen und Funktionen. Math. Reihe. Band 27, Basel und Stuttgart (1963).
- [4] E. Kunz: Differentialformen inseparabler algebraischen Funktionenkörper. Math. Zeitschr., 76, 56-74 (1961).
- [5] —: Über die kanonische Klasse eines vollständigen Modells eines algebraischen Funktionenkörper. J. reine u. angew. Math., 209, 17-28 (1962).
- [6] Y. Kawahara, T. Kimura, and M. Furuya: On ground field extensions of function fields. TRU Math., 1, 51-59 (1965).
- [7] M. Furuya and T. Kimura: Note on ground field extensions of function fields. TRU Math., 4, 32-35 (1968).
- [8] J. Tate: Genus change in inseparable extensions of function fields. Proc. Amer. Math. Soc., 3, 400-406 (1952).