128. On Some Properties of A^p(G)-algebras^{*}

By Hang-Chin LAI

Mathematical Institute Tohoku University, Sendai and Institute of Mathematics National Tsig Hua University, Taiwan China

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

1. Introduction. Let G be a locally compact abelian group with dual group \hat{G} . We denote dx and $d\hat{x}$ the Haar measures of G and \hat{G} respectively. Recently, Larsen, Liu, and Wang [4] have investigated a space $A^{p}(G)$ consisting of all complex-valued functions $f \in L^{1}(G)$ whose Fourier transforms \hat{f} belong to $L^{p}(\hat{G})$ $(p \ge 1)$. In this paper, we shall show further investigations of the algebra $A^{p}(G)$ proving the existence of the approximate identities of $A^{p}(G)$ and using the approximate identity to give a reproof of Theorem 5 in [4]. We show also that the closed primary ideal of $A^{p}(G)$ is maximal.

2. The approximate identities of $A^{p}(G)$ -algebras. It is clear that $A^{p}(G)$ is an ideal dense in $L^{1}(G)$ under convolution. Indeed, for any $f \in A^{p}(G)$ and $g \in L^{1}(G)$,

$$\|\widehat{f*g}\|_p \leqslant \|\widehat{g}\|_{\infty} \|\widehat{f}\|_p$$

proving $f * g \in A^p(G)$ and the density of $A^p(G)$ in $L^1(G)$ follows from the fact that if $\{e_{\alpha}\}$ is an approximate identity in $L^1(G)$ whose Fourier transforms have compact supports then $e_{\alpha} \in A^p(G)$ and for an arbitrary function $f \in L^1(G)$ we have

$$f \ast e_{\alpha} \in A^{p}(G) \text{ and } \| f \ast e_{\alpha} - f \|_{1} \rightarrow 0.$$
 Define the norm of $f \in A^{p}(G)$ $(1 \leq p < \infty)$ by

 $\|f\|^{p} = \|f\|_{1} + \|\hat{f}\|_{p}$ where $\|f\|_{1} = \int_{g} |f(x)| dx$ and $\|\hat{f}\|_{p} = \left(\int_{\hat{g}} |\hat{f}(\hat{x})|^{p} d\hat{x}\right)^{1/p}$. Then $A^{p}(G)$ is a commutative Banach algebra under convolution as its product and with the norm $\|\cdot\|^{p}$ (see [4; Theorem 3]).

We say here an approximate identity for $A^{p}(G)$ a family $\{e_{a}\}$ of functions in $A^{p}(G)$ such that for any $f \in A^{p}(G)$ and $\varepsilon > 0$, there exists $e_{a} \in \{e_{a}\}$ such that $||e_{a}*f-f||^{p} < \varepsilon$.

Theorem 1. The Banach algebra $A^{p}(G)$ has an approximate identity with the properties that it is also the bounded approximate identity for $L^{1}(G)$ and whose Fourier transform has compact support in \hat{G} .

Proof. By Rudin [7] Theorem 2.6.6, we see that there is a

^{*)} This research was supported by the Mathematics Research Center, National Science Council, Taiwan, Republic of China.

bounded approximate identity $\{e_{\alpha}\}$ in $L^{1}(G)$ such that each \hat{e}_{α} has compact support in \hat{G} where $\{\alpha\}$ is a directed set. Let K be an arbitrary compact set in \hat{G} . Then there exists a function $k \in L^{1}(G)$ such that $\hat{k}=1$ on K. Thus

$$\hat{e}_{\alpha} \cdot \hat{k}(\hat{x}) = \hat{e}_{\alpha}(\hat{x})\hat{k}(\hat{x}) = \hat{e}_{\alpha}(\hat{x})$$

for any $\hat{x} \in K$. Now for a given $\varepsilon > 0$ there exists an index α_0 such that $||e_{\alpha}*k-k||_1 < \varepsilon$ whenever $\alpha > \alpha_0$. Then for any $\hat{x} \in K$,

$$egin{aligned} &|\hat{e}_{a}(\hat{x})\!-\!1\!\mid = \mid \hat{e}_{a}(\hat{x})\hat{k}(\hat{x})\!-\!\hat{k}(\hat{x})\mid \leqslant \parallel \hat{e}_{a}\hat{k}\!-\!\hat{k}\parallel_{\infty} \ &\leqslant \parallel e_{a}\!*\!k\!-\!k\parallel_{1}\!<\!arepsilon \end{aligned}$$

for $\alpha > \alpha_0$. Hence \hat{e}_{α} converges to 1 uniformly on any compact set in \hat{G} . We assert that $\{e_{\alpha}\}$ becomes an approximate identity for $A^p(G)$ as follows.

Since $f \in A^{p}(G)$, $\hat{f} \in L^{p}(\hat{G})$. Therefore for a given $\varepsilon > 0$, we may choose a compact set $K = K_{\epsilon}$ in \hat{G} so that

$$\int_{-\kappa} |\hat{f}(\hat{x})|^p d\hat{x} \!<\! arepsilon^p/2^{2p+1}M^p$$

where $\sim K$ is the complement of the set K and M is a constant such that $||e_{\alpha}||_{1} \leq M$. As $\hat{e}_{\alpha} \rightarrow 1$ uniformly on K,

$$\int_{K} |\hat{f}(\hat{x})\hat{e}_{\alpha}(\hat{x}) - \hat{f}(\hat{x})|^{p} d\hat{x} \rightarrow 0.$$

Thus there exists α_0 such that

$$\int_{\kappa} |\hat{f}(\hat{x})\hat{e}_{lpha}(\hat{x})-\hat{f}(\hat{x})|^p d\hat{x} < rac{arepsilon^p}{2^{p+1}}$$

for $\alpha > \alpha_0$ and so

$$\begin{split} & |\hat{f}(\hat{x})\hat{e}_{a}(\hat{x}) - \hat{f}(\hat{x})|^{p} d\hat{x} \\ &= \int_{K} |\hat{f}(\hat{x})\hat{e}_{a}(\hat{x}) - \hat{f}(\hat{x})|^{p} d\hat{x} + \int_{-\kappa} |\hat{f}(\hat{x})\hat{e}_{a}(\hat{x}) - \hat{f}(\hat{x})|^{p} d\hat{x} \\ &\leq \int_{K} \hat{f}(\hat{x})\hat{e}_{a}(\hat{x}) - \hat{f}(\hat{x})|^{p} d\hat{x} + 2^{p}M^{p} \int_{-\kappa} |\hat{f}(\hat{x})|^{p} d\hat{x} \\ &< \varepsilon^{p}/2^{p+1} + \varepsilon^{p}/2^{p+1} = \varepsilon^{p}/2^{p} \end{split}$$

whenever $\alpha > \alpha_0$. Therefore

$$\| f * e_{lpha} - f \|_p \! < \! arepsilon / \! 2 \qquad ext{for} \ lpha \! > \! lpha_{\scriptscriptstyle 0} \! .$$

On the other hand, since $\{e_{\alpha}\}$ is an approximate identity for $L^{1}(G)$, there is an index α_{1} such that

 $\|f * e_{\alpha} - f\|_1 < \varepsilon/2 \quad \text{for } \alpha > \alpha_1.$ Letting $\alpha_2 = \sup(\alpha_0, \alpha_1)$, we obtain

$$\begin{split} \|f \ast e_{\alpha} - f\|_{p} &= \|f \ast e_{\alpha} - f\|_{1} + \|f \ast e_{\alpha} - f\|_{p} \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon \end{split}$$

whenever $\alpha > \alpha_2$. This completes the proof. Q.E.D.

We notice that contrary to the usual case the approximate identity in $A^{p}(G)$ can not be chosen to be uniformly bounded in general. Indeed,

[Vol. 45,

let $\{e_{\alpha}\}$ be an arbitrary approximate identity for $A^{p}(G)$, then $\{e_{\alpha}\}$ is also an approximate identity for $L^{1}(G)$. Consider a compact set Kwith positive measure. As we have shown before, $\hat{e}_{\alpha} \rightarrow 1$ uniformly on K. Hence for any $\varepsilon > 0$ there exists α such that

$$\int_{\kappa}(\mid\!\hat{e}_{a}(\hat{x})\mid^{p}\!-\!1)d\hat{x}\!>\!-arepsilon$$

or

$$\int_{K} |\hat{e}_{\alpha}(\hat{x})|^{p} d\hat{x} > m(K) - \varepsilon$$

where m(K) is the measure of K. Therefore $\|\hat{e}_{\alpha}\|_{p} > (m(K) - \varepsilon)^{1/p} > (m(K)/2)^{1/p}$

for a small ε , and in general m(K) can be large enough. Hence $\{\|\hat{e}_{\alpha}\|_{p}\}$ is not uniformly bounded so is not $\{\|e_{\alpha}\|^{p}\}$.

Applying Theorem 1, we can reprove the following result due to Larsen, Liu, and Wang [4; Theorem 5].

Theorem 2. For each $p(1 \le p < \infty)$ the following two statements hold:

(i) If I_1 is a closed ideal in $L^1(G)$, then $I = I_1 \cap A^p(G)$ is a closed ideal in $A^p(G)$.

(ii) If I is a closed ideal in $A^{p}(G)$ and I_{1} is the closure of I in $L^{1}(G)$, then I_{1} is a closed ideal in $L^{1}(G)$ and $I = I_{1} \cap A^{p}G$.

Remark. This theorem is also suggested by analogous results in Liu and Wang [5, Theorem 7] in which $A^p(G)$ is replaced by $D=D_{1,p}$ = $L^1(G) \cap L^p(G)$ (1<p< ∞) with the norm $||f|| = \max(||f||_1, ||f||_p)$.

Proof of Theorem 2. The proof of (i) is immediate and will be omitted. Similarly, in (ii) it is easy to verify that I_1 is a closed ideal in $L^1(G)$ and that $I \subset I_1 \cap A^p(G)$. We shall prove $I \supset I_1 \cap A^p(G)$ as following.

It sufficies to prove that I is dense in $I_1 \cap A^p(G)$. Let $f \in I_1 \cap A^p(G)$. We show that for any $\varepsilon > 0$ there is an element h in I such that $||h - f||^p < \varepsilon$. By Theorem 1, there exists an approximate identity $\{e_a\}$ of $A^p(G)$ for which each \hat{e}_a has compact support in \hat{G} . Take a sequence $\{f_n\}$ in I such that $f_n \rightarrow f$ in L^1 -norm. It follows that

(1) $e_{\alpha}*f_{n} \rightarrow e_{\alpha}*f$ in L¹-norm for each fixed α . Now, since

$$\begin{split} | \widehat{e_{\alpha}} \widehat{f}_{n}(\hat{x}) - \widehat{e_{\alpha}} \widehat{f}(\hat{x}) |^{p} \leqslant | \widehat{e}_{\alpha}(\hat{x}) |^{p} | \widehat{f}_{n}(\hat{x}) - \widehat{f}(\hat{x}) |^{p} \\ \leqslant | \widehat{e}_{\alpha}(\hat{x}) |^{p} \| \widehat{f}_{n} - \widehat{f} \|_{1}^{p} \\ \leqslant | \widehat{e}_{\alpha}(\hat{x}) |^{p} \| f_{n} - f \|_{1}^{p} \\ \leqslant M | \widehat{e}_{\alpha}(\hat{x}) |^{p} \end{split}$$

for some constant M and $\hat{e}_{\alpha} \in L^p(\hat{G})$, the Lebesgue convergence theorem is applicable, and

(2)
$$\int_{G} |\widehat{e_{\alpha} * f_{n}}(\hat{x}) - \widehat{e_{\alpha} * f}(\hat{x})|^{p} d\hat{x} \to 0 \quad \text{as } n \to \infty$$

No. 7]

for each α . Given any $\varepsilon > 0$, there exists α_0 such that

$$\|e_{\alpha_0} * f - f\|^p \leq \varepsilon/3$$

and for this e_{α_0} there is an integer n_0 such that, by (1) and (2) $\|\hat{e}_{\alpha_0}\hat{f}_{n_0} - \hat{e}_{\alpha_0}\hat{f}\|_p < \varepsilon/3$

and

$$\| e_{\alpha_0} * f_{n_0} - e_{\alpha_0} * f \|_1 < \varepsilon/3.$$

Therefore

$$\begin{split} \| \, e_{a_0} * f_{n_0} - f \, \|^p &\leqslant \| \, e_{a_0} * f_{n_0} - e_{a_0} * f \, \|^p + \| \, e_{a_0} * f - f \, \|^p \\ &\leqslant \| \, e_{a_0} * f_{n_0} - e_{a_0} * f \, \|_1 + \| \, \hat{e}_{a_0} \hat{f}_{n_0} - \hat{e}_{a_0} \hat{f} \, \|_p + \| \, e_{a_0} * f - f \, \|^p \\ &< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon . \end{split}$$

Since $e_{a_0} * f_{a_0} \in I$, this completes the proof.

Q.E.D.

3. Primary ideals in $A^{p}(G)$. A primary ideal of a Banach algebra B means a proper ideal I in B that is contained in only one maximal ideal of B.

In the Gel'fand representation \hat{B} , a primary ideal I can be characterized by the fact that the set on which all functions $\hat{f}(M) \in I$ (where M is a maximal ideal) vanish consists of a single point. If I is a closed primary ideal, then the residue-class algebra B/I contains a unique maximal ideal. The conclusion of Theorem 2 holds also for the case of primary ideals. As the (regular) maximal ideal space of $L^1(G)$ is homeomorphic to the (regular) maximal ideal space of $A^p(G)$, the following proposition holds immediately.

Proposition 3. There is a one-to-one correspondence between the set of all closed primary ideals of $A^{p}(G)$ and the set of all closed primary ideals of $L^{1}(G)$. More precisely, every closed primary ideal of $A^{p}(G)$ is simply the intersection of a unique closed primary ideal of $L^{1}(G)$ with $A^{p}(G)$.

Kaplansky [3] proved that every closed primary ideal in $L^{1}(G)$ is maximal; and so we have immediately that

Proposition 4. Every closed primary ideal in $A^{p}(G)$ is maximal; therefore we can identify the set of all closed primary ideals in $A^{p}(G)$ with \hat{G} .

The author wishes to acknowledge here his indebtedness to Prof. M. Fukamiya and Prof. J. Tomiyama for their many valuable suggestions and encouragements.

References

- [1] F. T. Birtel: Banach algebras of multipliers. Duke Math. J., 28, 203-211 (1961).
- [2] E. Hewitt: A new proof of Plancherel's theorem for locally compact abelian group. Acta Univ. Szeged, 24, 219-227 (1963).
- [3] I. Kaplansky: Primary ideals in group algebras. Proc. Nat. Acad. Sci., 35, 133-136 (1949).

- [4] R. Larsen, T. S. Liu, and J. K. Wang: On functions with Fourier transforms in L^p. Michigan Math. J., 11, 369-378 (1964).
- [5] T. S. Liu and J. K. Wang: Sums and intersections of Lebesque spaces (to appear in Math. Scand).
- [6] Lynn H. Loomis: An Introduction to Abstract Harmonic Analysis. New York, Van Nostrand (1953).
- [7] W. Rudin: Fourier Analysis on Groups. Interscience Publishers, New York (1962).