No. 7]

113. On the Projective Cover of a Factor Module Modulo a Maximal Submodule^{*)}

By Hisao Katayama

Ube Technical College

(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1969)

1. Let R be a ring with 1 which has the Jacobson radical J(R). In [3], Koh has proved the following:

Every irreducible right *R*-module has a projective cover if and only if *R* is semiprimary and for any nonzero idempotent x+J(R) in R/J(R) there exists a nonzero idempotent *e* in *R* such that $ex - e \in J(R)$.

The purpose of the present paper is, as a generalization of the result of Koh, to show the following theorem:

Theorem. Let $M = M_R$ be a projective co-atomic module. Then the following statements are equivalent:

(1) For every maximal submodule I of M, M/I has a projective cover.

(2) M/J(M) is semisimple and for any nonzero idempotent $\hat{s} \in \hat{S}$ there exists nonzero idempotent $e \in S$ such that $\hat{e}\hat{s} = \hat{e}$.

2. Let $M=M_R$ be an unital right *R*-module. We write J(M) for the radical of M and \overline{M} for the factor module M/J(M). Let $S=\operatorname{Hom}_R(M, M)$ and let $\hat{S}=\operatorname{Hom}_R(\overline{M}, \overline{M})$. As usual, we write these endomorphisms on the left of their arguments. We note that every $s \in S$ induces an $\hat{s} \in \hat{S}$, since $sJ(M) \subseteq J(M)$. For any submodule U of M, we denote by ν_U the natural epimorphism $M \to M/U$.

A submodule A of M is called *small* if A+B=M for any submodule B of M implies B=M. A *projective cover* of M is an epimorphism of a projective module P onto M with small kernel.

We call M is *co-atomic* if every proper submodule of M is contained in a maximal submodule of M. As is easily seen, if M is co-atomic, then J(M) is small in M (cf. [5]). It is well known that M has a maximal submodule if M is projective (cf. [1]), and we can show that semi-perfect modules defined in [4] are co-atomic as follows: Let T be any proper submodule of a semi-perfect module M, and let $P \rightarrow M/T \rightarrow 0$ be a projective cover of M/T with kernel K. Then $P/K \cong M/T$ and, since any maximal submodule of P contains K, T is contained in a maximal submodule of M as desired.

Lemma 1. Let M be a projective module and I a maximal

^{*)} Dedicated to Professor K. Asano for the celebration of his sixtieth birthday.

submodule of M. Then M/I has a projective cover if and only if there exists a nonzero idempotent $e \in S$ such that eI is small in M.

Proof. Let $P \xrightarrow{\pi} M/I \rightarrow 0$ be a projective cover of M/I. Since M is projective, there exists a homomorphism $M \xrightarrow{\alpha} P$ such that $\pi \alpha = \nu_I$:

Then $P = \operatorname{Im} \alpha + \operatorname{Ker} \pi$. Since $\operatorname{Ker} \pi$ is small in $P, P = \operatorname{Im} \alpha$. Since P is projective, the exact sequence $M \xrightarrow{\alpha} P \to 0$ splits, so there exists a homomorphism $P \xrightarrow{\beta} M$ such that $M = \operatorname{Ker} \alpha \oplus \operatorname{Im} \beta$. If $\alpha I = 0$, then $I = \operatorname{Ker} \alpha$. Let $M \xrightarrow{f} I$ be the projection and let $e = 1 - f \in S$. Then we have eI = (1 - f)fM = 0, and hence eI is small in M. If $\alpha I \neq 0$, then $\alpha I \subseteq \operatorname{Ker} \pi$ since $\pi \alpha I = \nu_I I = 0$. Now αI is small in P, therefore $\beta \alpha I$ is small in M. Put $e = \beta \alpha \in S$. Then $e^2 = \beta \alpha \beta \alpha = \beta \alpha = e$ and hence e is a desired idempotent.

Conversely, suppose that there is a nonzero idempotent $e \in S$ such that eI is small in M. Put $(I:e) = \{x \in M \mid ex \in I\}$. Since $eI \subseteq J(M)$, the maximality of I implies (I:e) = I. Now define a mapping $eM \xrightarrow{g} M/I$ by g(ex) = x + I. The mapping g is well defined and is an epimorphism with kernel eI. Since eM is a direct summand of M, eM is projective. Thus g is a projective cover of M/I.

Lemma 2. Let I be a large maximal submodule of M and let $L = \{s \in S \mid sI = 0\}$. Then $L^2 = 0$.

Proof. If $s_1 \neq 0$, $s_2 \neq 0$ are elements in L, then $I \cap s_2 M \neq 0$. Therefore for some $x \in M$, $0 \neq s_2 x \in I$ and $s_1 s_2 x = 0$. Assume that $s_1 s_2 \neq 0$. Then by the maximality of I, $\{y \in M | s_1 s_2 y = 0\} = I$. Thus $x \in I$. This is impossible since $s_2 \in L$ and $s_2 x \neq 0$. Thus $L^2 = 0$.

Lemma 3 (cf. [2]). Let M be a co-atomic module such that each maximal submodule of M is not large. Then M is semisimple.

Proof. Let F be the socle of M. If $F \neq M$, then F is contained in a maximal submodule I of M. Since I is not large in M, there is a nonzero submodule K of M such that $I \cap K=0$. By the maximality of $I, M=I \oplus K$. Since $K \cong M/I$, K is irreducible which is not contained in F. This is impossible. Thus F=M.

Theorem. Let M_R be a projective co-atomic module. Then the following statements are equivalent:

(1) For every maximal submodule I of M, M/I has a projective cover.

(2) M/J(M) is semisimple and for any nonzero idempotent $\hat{s} \in \hat{S}$ there exists a nonzero idempotent $e \in S$ such that $\hat{e}\hat{s} = \hat{e}$. **Proof.** (1) \Rightarrow (2). Since M is co-atomic, $\overline{M}=M/J(M)$ is also coatomic. Let \overline{I} be a maximal submodule of \overline{M} . Then, for some maximal submodule I of M, $\overline{I}=I/J(M)$. By Lemma 1, there exists a nonzero idempotent $e \in S$ such that eI is small in M. Thus $eI \subseteq J(M)$. By the following commutative diagram

 $e\bar{I}=0$. If $e\bar{M}=0$, then $eM\subseteq J(M)$. But, since M is projective, J(M) can not contain any nonzero direct summand of M (cf. [4], p. 350), and hence \hat{e} is a nonzero idempotent in \hat{S} . Let $L=\{\hat{s}\in\hat{S}\mid\hat{s}\bar{I}=0\}$. Then $L^2\neq 0$, and thus, by Lemma 2, \bar{I} is not large in \bar{M} . By Lemma 3, \bar{M} is semisimple.

Now let $\hat{s} \in \hat{S}$ be any nonzero idempotent. Since \bar{M} is co-atomic, $(1-\hat{s})\bar{M}$ is contained in a maximal submodule \bar{I} of \bar{M} . Then, for some maximal submodule I of M, $\bar{I}=I/J(M)$, and by Lemma 1, there exists a nonzero idempotent $e \in S$ such that eI is small in M. Since $eI \subseteq J(M)$, $\hat{e}\bar{I}=0$. Operating \hat{e} to the relation $(1-\hat{s})\bar{M}\subseteq\bar{I}$, we obtain $\hat{e}(1-\hat{s})\bar{M}=0$. Thus $\hat{e}(1-\hat{s})=0$.

 $(2) \Rightarrow (1)$. Let I be a maximal submodule of M. Then $J(M) \subseteq I$ and $\overline{I} = I/J(M)$ is a (maximal) submodule of \overline{M} . Since \overline{M} is semisimple, there is a (minimal) submodule $\overline{K} = K/J(M)$ such that $\overline{M} = \overline{I} \oplus \overline{K}$. Let $\overline{M} \stackrel{\$}{\to} \overline{K}$ be the projection. Then by the assumption, there exists a nonzero idempotent $e \in S$ such that $\widehat{es} = \widehat{e}$. Since $\widehat{sI} = 0$, $\widehat{eI} = 0$, i.e. $eI \subseteq J(M)$. Now since M is co-atomic, J(M) is small in M, and hence so is eI. By Lemma 1, M/I has a projective cover.

Remark. Since any irreducible right *R*-module can be written as R/I, where *I* is a maximal right ideal of *R*, and since \hat{S} is naturally isomorphic to S/J(S) (cf. [5], p. 95), the above Theorem includes, in the special case where $M_R = R_R$, the result of Koh [3] mentioned in § 1.

Corollary. Let M be a projective co-atomic module. Then the following statements are equivalent:

(1) M is indecomposable, and for every maximal submodule I of M, M/I has a projective cover.

(2) J(M) is the unique maximal submodule of M.

Proof. (1) \Rightarrow (2). By the Theorem, \overline{M} is semisimple. Thus for any proper submodule N of M, $\overline{N}=(N+J(M))/J(M)$ is a direct summand of \overline{M} . If $\overline{N}\neq 0$, then for the projection $\overline{M}\xrightarrow{\hat{s}}\overline{N}$, there exists a nonzero idempotent $e \in S$ such that $\hat{e}\hat{s}=\hat{e}$. Now since M is indecomposable, e=1. Thus $\overline{N}=\hat{s}\overline{M}=\hat{e}\hat{s}\overline{M}=\hat{e}\overline{M}=\overline{M}$. Hence N+J(M)=M. Since J(M) is small in M, we obtain N=M.

No. 7]

Η. ΚΑΤΑΥΑΜΑ

 $(2) \Rightarrow (1)$. If M = A + B, and both A, B are proper submodules of M, then $A \subseteq J(M)$ and $B \subseteq J(M)$. Thus M = J(M) which is impossible since M is projective. Now since J(M) is small in M, $M \xrightarrow{\nu_J(M)} M/J(M) \rightarrow 0$ is a projective cover.

Added in proof. After submitting this paper, Prof. Y. Kurata has proved our Corollary, using Lemma 1, without the assumption of co-atomicness.

References

- H. Bass: Finitistic dimension and a homological generalization of semiprimary rings. Trans. Amer. Math. Soc., 95, 466-488 (1960).
- [2] K. Koh: On very large one sided ideals of a ring. Canad. Math. Bull., 9, 191-196 (1966).
- [3] ----: On a semiprimary ring. Proc. Amer. Math. Soc., 19, 205-208 (1968).
- [4] E. A. Mares: Semi-perfect modules. Math. Zeitschr., 82, 347-360 (1963).
- [5] Y. Miyashita: Quasi-projective modules, perfect modules, and a theorem for modular lattices. J. Fac. Hokkaido Univ., 19, 86-110 (1966).