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153. On Mixed Problems for First Order Hyperbolic
Systems with Constant Coefficients

By Takashi SADAMATSU

(Comm. by Kinjiré KUNUGI, M. J. A., Oct. 13, 1969)

1. Introduction. Mixed problems for linear hyperbolic equa-
tions with constant coefficients in a quarter space has been treated by
S. Agmon [1], R. Hersh [2] and L. Sarason [6].

In this note, we consider the mixed problem for first order hyper-
bolic systems with the principal part

_ 0 0 n
L[u]_ﬁu +A%u+ ]ZﬂBj

w(0; x, y)=0

Pu(t; 0, y)=0
in the quarter space {(t;x, y); t>0, x>0, y € R"}, where u is a N-
vector, A, B;(j=1,2, ---,n) NXN-constant matrices and P mXN-
constant matrix of rank m. A is supposed to be non-gingular.

Our argument is based on Wiener-Hopf’s method. After Laplace
transformation in ¢ and Fourier transformation in ¢, the problem (1.1)
is translated into the following equation
02 [(Ad%+11+i % ij) e @, 7= fc; @, )

Pi(r; 0, n)=0,
where d(z; x,7) denotes the Fourier-Laplace image of u(t;z, y).
Using a compensating function g(r; @, ») which shall be constructed

later and setting u=v+w, we decompose the problem (1.2) to two
problems
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in z e R* and
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a—yju=f(t; x, Y)

a.n

d AL _
(1.4) [(%“FM(T, 77)) W(z; @, ) =0

where M(z, p)=A""! (TI -l-ii 7B j) . Thus we are to treat the problems
=1
(1.3) and (1.4).
2. Assumptions and result. Condition I. The operator L is

hyperbolic in the following sense: 1) the matrix §A+ 7B (773 stands

for fn ;B j> has only real eigenvalues for any real (£, »), 2) the matrix
i=1
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§A + 7B is diagonalizable and the multiplicities of eigenvalues are con-
stant for any real (¢, 7)=(0, 0), i.e. we have

@.1) det (z1 +iEA +i9B) =jﬁ1 (c —i2,(&, N)?s

with 4,(§, ) (=1, 2, -- -, s) real and distinct for any real (£, 1) =(0, 0)
and p,(j=1, 2, - - -, s) constants (p,+p,+ - - - +p,=N).

Condition II. For any real » and for any pure imaginary r(=1iy;
7: real), the real roots in & of det(z/+i§A+inB)=0 are at most
double in the sense of the remark below for any real (y, 7)+(0, 0).

Remark. Let r=t"=1y"(y*: real), =7’ and &° be a real double
root of det (z"I+t§A+in°B)=0. Then a real double root means that

% 2,&°% 7)=0 and ;?;2 2(&% 99=#0. A real simple root means
j_ 0 0= ()
ag xi(& ’ 77 ):t& .

Let E+(z, n) (resp. E~(z, 7)) be the subspace of C¥ generated by
the ordinary and the generalized eigenvectors corresponding to the
roots in & of det (¢§1+ M(z, ))=0 with positive (resp. negative)
imaginary parts when Rer>0. From Conditions I and II, we
can construct at least locally a system of vectors {h;(z, D}jc1s.cm
continuous and homogeneous of degree zero in = and » which is a base
of E+(zr, ) when Re >0 and remains linearly independent still when
Re 7 > 0 (see, M. Mizohata [4], M. Matsumura [3]).

Condition III. The absolute value of Lopatinski determinant is
uniformly bounded away from 0 in |z [+ |y =1 (Re7>0), that is,
there exists a positive constant ¢ such that

|det PH(z,n)| >0 for z]*+ |pPf=1 Rer>0.
holds, where J((z, ) is a N X m-matrix (hy(z, 9), - - -, hy(z, ). Then
we have

Theorem. Under Conditions I, II and I1I, we have the inequality
NSt | f (x5 @, Mlsnces

et
for any solution Wz ; x, n) of the problem (1.2) where the constant
does not depend on T and 7.

3. Sketch of the proof. In this section we treat the problems
(1.3) and (1.4) and give a sketchy proof of the theorem assuming some
lemmas. The solution ¥(z; «, ) in LA(R") of the problem (1.3) can be
represented by

3.1

la(z 5 2, Dllzaey, <

b0 = o | eI +iEA+ B (s & D+ & e
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where f(r; &, n) (briefly F(&) denotes Fourier image of f(z' ; 2, ) in
z and

(B2 Pi; 0, =g Pel+iEA+inB{F@+a@)d

Lemma 1. Under Condition 1, the inequality
3.3) (eI +igA +inB)~| < 90BSt:
Rert

holds for Re t>0, where the constant does not depend on =, & and 7).

From (3.1) and Lemma 1, we have the following:

Proposition 1. Under Condition 1, the inequality
B4 55 @, ) asenn < S
holds for the solution ¥(t ; x, 5) of the problem (1.8).

Lemma2. From ConditionI, therootsin & of det (zr1+1i5A +inB)
are never real for any t (Re t>0) and real &.

This lemma shows that the numbers of the roots in & of det (z/
+1§A+1inB)=0 with positive and negative imaginary parts do not
change for any 7 (Re 7>>0) and real 7.

(B2 P 0,7 =——|  PEI4+i&'A+in By {f(ed)+7(c)ds’

”f(z'; x; 77)+§(T; x, v)”Lz(Rl)

where (77, &/, n’):% (z, &, 7)) and e=(z[P+|pP»!. Here we decompose

det (z’I +1§’A +17’B) into factors:
8.5) det(z'I+if’A+iy’'B)=i" det A-A* (&5 ¢/, VA (&5 7', 1)

(3.6) A@s 7, = @&, )
3.7 AEs T, =T] € =&, 1)

j=1

where £;(z/, ') and &£5(z/, ') are the roots in &’ of det (z'I+1i&’A +i7'B)
=0 with positive and negative imaginary parts respectively. Let us
’/=1y", n’=7" and suppose that M(iy", »*) admits a pure imaginary
root ¢§” and that y”=2,(§", 1*), then we have the following:

Lemma 3. If we suppose Conditions I and II, then the rank
of T'I+i§’A+1iy'B is N—p, in a small neighbourhood of (z¥,&",7%)
=@, ), &, ") (TP +|7'f=1) when (¢, &', ") satisfies det (']
+18’A+1iy'B)=0.

b With the help of this lemma, we can define the matrix P(§’; ¢/, 9")
y
’ Y PP RY-1 PE; T, 7]/)
@9 Pl +orB) AFE T, A E 5 T, )

where

Ap €, ) = f{ E—E&3, 7)), Ar (€57, 1) =j”'=i;($'—s;(r’,r/»
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here we changed the notation in the following way: we denotes
§f=-..=§&;, simply by £, §,,,=--- by & and soon and &7, - -+, &5
are all distinct roots of det (z'I+1i§’A +47'B)=0 which approach real
roots when (7, 1) tends to (" =1y", y*). Further we can decompose
3.9 PE5 T, 1) _ P, DT, )
A(-)F(E/; z./’ 7)/)A0—(§I. T, 771 A+($/. 1./ n/) A—(EI. z./ 7]/)

P&, ) e, PET T ), pecer.
G @ o s TR

P57, ) e, NPET; T ) ,
e v AT e N S TR
where £3(z/, ) (j=1,2, - -+, @) denote the roots which approach the
real double roots & (zr"', »”) and §;(z/, 1) (G=q+1, - -, q+s=D),
&7, ) (G=q+1, ---, ¢+’ denote the roots which approach the real
simple roots when (z/, 7’) tends to (iy", ").

Lemma 4. Under Condition 11, we have

1) Ic?(r’,v’)|=0(—|§+—1é_T—) for §=1,2,-
JT %

< const. for j7=1,2,.-..,¢q

M* M

;s )
¢j (@', )
3) |ei(z/, )| <const.  for j=q+1,---,q+s
|c;(z’, ') | <const. for j=q+1, - --,q+¢

t.
4 |R=E; 1, )| < 2008 for real &
| 7| 1+ 1§

for any (z/, 7)) in V'N{Re7'>0} where V’=%V and V is a small

2)

netghbourhood of (iy’, °)
Lemma 5. Let a and 8 be not real, then the equality

omi L 5 for Imlal>0, Iml§1>0
- a—
1 ,
(3.12) f_m oo g% T —2ni - 13 for Im[a]<0, Im[81<0
0 for Imla]-Im[B]< 0
holds.
Lemma 6. Under Condition 1, we have

(8.13) |Im &'(z’, )| >const. Re 7/

where &'(t’, 7)) is @ root of det (z’I+1i§’A+1y’'B)=01in &'.
Lemma 7. Under Conditions 1 and I1, we have

Im[£3(<’, )] - .
(8.14) Tl [Senst =12 )

for (z/, p") in V'N{Re ' >0}
Using above decompositions
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-7 §&—&;
%y
/ 1 (> &, ) NPED—PED)} 70 .en gz
2 = J J
ey + L[ % LPED=PED foera
_1_°° @3 (ej(t, 77/)9')(5+) F(E e ot AN ’
s g Ll g R 7)) (e

A7 S [ IPED L pers o, ) FeeNae!
+27‘E —°°j=q+1{ &' —¢&5 +R($’T’7))}f(cf)df-

With the help of above lemmas we can construct a compensating func-
tion §(c&’) from the condition

S G DPEDN ey 1 1 OPED ] azr =0
= §&—§; §'—§;
and further g(c&’) satisfies the following properties:

D [ 1gesnrag <const. || esnpaz.

2) the support of g(r; x, ») is contained in R".

Proposition 2. Under Conditions 1 and 11, the inequality

IPi(e; 0, )| <S5 ([ | 7y rag) '
vRet \J-=
holds for (z,n) e VN{Rer>0}. Where the constant does not depend
on T and 7.

Next we treat the solution w(r; z, ») in L*R%) of the problem
(1.4). As 4(r; 0, n) should be in E*(zr, 1), w(r; 0, 7) can be written
in the form
(3.15) W(r; 0, P=c,hi(t, P+ - +cxhi(z, n)

(3.16) Pi(z; 0, p)=c,Phi(z, P+ - + ¢, Phi(t, n)= —Pi(r;0.7)
From Condition III and the Cramer formula

3.17) le(z, p)| <const. |Po(r; 0, 7).

The solution %(r ; z, ») in LA(R?) of the problem (1.4) is

418) (s, =L f 2 GEL+ M(z, )~9b(z ; 0, n)dE
2w Je

—00

where ¢ is a simple closed curve containing the roots with positive
imaginary part of det (rI+i£A+ipB)=0 in & (see M. Mizohata [4]).
By Proposition 2, we have
4.19) rm(f;x, ) | da < -C00st: r | F(&) pde.
0 Re7)J-=

This inequality and Proposition 1 follow the theorem.

The detailed proof of the theorem will appear in Journal of
Mathematics of Kyoto University.
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