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A Remark on a Semilinear Degenerate Diffusion System

By Masayasu MIMURA

(Comm. by Kinjir6 KUNUGI, M. J. A., Oct. 13, 1969)

1. Introduction. This remark is concerned with the following
mixed problem in RT----{0 t< T, 0 x},

( 1 ) 3u 32u + f(v)u+ g(v), 3v u,
3t 3x t

with the initial boundary conditions,

u(x, 0)=u0(x), v(x, 0)=v0(x) or 0<x(2)
v(0, t)=(t) for 0< t< T.

First, let us note the theorem proved by R. Arima and Y. Hasegawa
[1] with respect to the problem (1) and (2), which is given as ollow

Theorem 1. Suppose,
f(v), g(v) e C1,

K(v2-t 1) < f(v) < L,

(3) Ig(v)l<K.(v+Ivl) and

Uo(X), Vo(X) e _+ 2,/
(t) e C
u0(O) ’(o), v0(o) (o),
+"(0)-- ug’(O) + f(+(O))+’(O) + g(+(O)).

Then there exists a unique solution {u(x, t), v(x, t)} in Rr such that
{u(x, t), v(x, t)} e ,0(_+ .q)/), where L, K, K, and K are positive
constants.

G(v) =- ;i g(z)dz<K3v,
for 0< x,
for 0< t< T,

In this note we prove the existence and the uniqueness theorem of
the ollowing more general system than (1) by using a suitable
difference scheme,

(4)

u 2u
3t 3x + f(v)u+ g(v)

3v a(u)v + b(u)
3t

and drive the different conditions from (3) in the case of a(u)=_O and
b(u)=_u.

Here we consider the mixed problem in Rr for (4) with the initial
boundary conditions,

u(x, 0)=u0(x), v(x, O)=vo(X) or 0<x(5)
u(O, t)=9(t) v(O, t)=+(t) for 0< t<T,

and also the compatibility conditions,
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(6)

(7)

(?’(0)- ug’(0) + f((0))(0) -t- g((0)),
u0(0)- (0), v0(0) +(0),
’(t) a((t))(t) + b((t)) for 0< t< T.

2. Existence theorem.
Let us introduce a difference scheme to (4)"

un+l,J__un,J un,J+l__2un,J un’J +1

+ f(vn,Oun+l, + g(vn’),
k h

vn+l,j__vn,j
a(un,j)vn+,J - b(un,J).

We consider (7) for ]-1, 2,... and n=O, 1,..., N with the initial
boundary conditions,

u,-Uo(]h), v,-vo(]h)(s) un,-- q(nk), vn,-- 4(nk)
and the compatibility conditions

for 2"-0, 1, 2, ...,
for n-0, 1, 2, ..., N,

u,O_ uO, uO,_ 2uO, / u,-1

(9) k h
+ f(v,)u1, + g(v’),

vn + I,O__ vn,O
--a(un,O)vn-, - b(un,) for n--0, 1, 2, ..., N.

Here wn,J-w(]h, nk) for w=_u or v and n, k, N----I are integers.
k

Now we have the following lemma.
Lemma 1. Supposing the conditions;

(10) f(v), a(u) L,
Ig(v)l<M1 Iv],

where L, M and M are positive constants, then the solution of the
difference scheme (7) under the initial boundary conditions (8) is stable.

The proof is the following. (7) is written as follows,

un+l,j 1 {p(un,O

__
kg(vn,j)},

(11) 1--kf(vn’O
1vn+l,J [vn,_. kb(un,)},

1-- ka(un’)

where p(un’J)-
h

From (8), (10) and (11),

(12)

1 {max (Iu I, I I) + max ([ v [, [ I)Mk},max ( Un+ll, I( )
1--kL

1 {max (Ivnl, I1) + maxmax (Iv/ll, I1)<-
1 kL

where Iwnl--suplwn’gI, I.l-- sup Iznl or Z=_ or . Thus the
jO N+lnO
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following estimates are obtained for any n,

H+ 1 + kM H
1-kL

and also
H<e(+)r.H for n=l, 2, ..., N+I,

where H max (] u ], ] ]) + max ([ v ], ] [) and M max (M,, M). Lemma
is proved.

Proposition. Supposing the conditions;
Uo(X) e , Vo(X) e

(13) ?(t) e C,
f(v), g(v) e C and a(u), b(u) e C,
f(v), a(u) <L and

then there exists the genuine solution of the problem (4), (5)and (6)in
RT such that
( 4 ) u(x, t) e o() d:(), v(x, t) e d:(+).

Proposition is proved by a slight modification of the argument [2].
If higher derivatives of u0, v0 and are bounded, it is possible to select
a subsequence of the h, for which {u,, vn,} converges together with
a number of its derivatives by using the help of Lemma 1 and the

limit function {u(x, t), v(x, t)} is a solution of (4), (5) and (6). Here
the proof is omitted.

Theorem 2. Supposing the conditions;
Uo(X) e , Vo(X)

(15) 9(t) e C or (t) e C
f(v), g(u), a(v), b(u)

f(v), a(u) <L and
then there exists the genuine solution of the problem (4), (5) and (6) in

Rr such that
(14) u(x, t) e (/) (./), v(x t)

Theorem 2 can be proved by using the properties of the

fundamental solution of heat equation.
:. Uniqueness theorem.
We have the ollowing lemma.
Lemma 2. If {u(x, t), v(x, t)} is a solution of the problem (4), (5)

and (6)in Rr, for which u(x, t)e 0(+) :(_0+) and v(x, t)e (o+)
and if {un,, n,} is the solution of the problem (7), (8) and (9) under

the conditions (10), then there exists a (e) for any e, such that for
O h, k<,
(16) Ilu’--u(x, t)ll + I[vn’--V(x, t)ll e in Rr,
where Ilwll=sup Iw(x, t)l and R[={the rectangular lattices with mesh

sizes (h, k) in Rr}.
The proof is analogous to that of [2]. So it is omitted.
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Theorem 3. As for a genuine solution {u(x, t), v(x, t)} of (4), (5)
and (6) satisfying the assumption of Lemma 2, the solution is unique.

The proof is that, if {u(x, t), v(x, t)} and {u2(x, t), v2(x, t)} are both
arbitrary functions satisfying (16) of Lemma 2, then for 0 k, h<,

+ lug(x, t)--u’il+]v(x, t)--v,l + live(x, t)--v’ll2 in Rr,
where (u,, vn,} is the solution of (7), (8) and (9). Thus we can prove
Theorem 3.
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