144. A Class of Markov Processes with Interactions. $I^{1)}$

By Tadashi Ueno
University of Tokyo and Stanford University

(Comm. by Zyoiti Suetuna, m. J. A., Oct. 13, 1969)

Here, we consider a motion of one particle under the interactions between an infinite number of similar particles. Each particle moves independently in a Markovian way until an exponential jumping time comes, and it jumps with a hitting measure which depends on other particles. A model, where the jumping time also depends on other particles, is discussed under auxiliary conditions. These results extend [9].

The models here came into our interest through the works of McKean [3-5], which started with Kac's model of Boltzmann equation [2].

1. Let $P(s, x, t, E)$ be a transition probability on a locally compact space R with countable bases and topological Borel field $\boldsymbol{B}(R)$. Assume $P(s, x, t, R) \equiv 1$ and
(1) $\quad P(s, x, t, U) \rightarrow 1, \quad$ as $t-s \rightarrow 0$, for open U containing x. Let $q(t, y)$ be a non-negative, measurable function, bounded on compact (t, y)-sets. Define

$$
\begin{equation*}
P_{0}(s, x, t, E)=E_{s, x}\left(\exp \left[-\int_{s}^{t} q\left(\sigma, X_{o}(w)\right) d \sigma\right] \chi_{E}\left(X_{t}(w)\right)\right) \tag{2}
\end{equation*}
$$

where $X_{t}(w)$ is a measurable Markov process with transition probability $P(s, x, t, E) . \quad E_{s, x}(\cdot)$ is the expectation conditioned that the particle starts at x at time s. This set up is possible by (1). Let $q_{n}(t, y)$, $n=0,1, \cdots$ be non-negative, measurable and $q(t, y) \equiv \sum_{n=0}^{\infty} q_{n}(t, y)$, and let $\pi_{n}\left(y_{1}, \cdots, y_{n} \mid t, y\right)$ be probability measures on $(R, \boldsymbol{B}(R)$), measurable in ($y_{1}, \cdots, y_{n}, t, y$) for fixed $E \in \boldsymbol{B}(R) .{ }^{2)}$

Consider a forward equation and a version of backward equation: (3) $P^{(f)}(s, x, t, E)$

$$
\begin{aligned}
= & P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R} P^{(f)}(s, x, \tau, d y) \sum_{n=0}^{\infty} q_{n}(t, y) \int_{R^{n}} \prod_{k=1}^{n} P_{s, \tau}^{(f)}\left(d y_{k}\right) \\
& \times \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E),{ }^{3)}
\end{aligned}
$$

[^0]\[

$$
\begin{align*}
& P^{\left(P_{s 0 s}^{(f)}\right)}(s, x, t, E) \tag{4}\\
& \quad=P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R} P_{0}(s, x, \tau, d y) \sum_{[n=0}^{\mid \prime \infty} q_{n}(\tau, y) \\
& \quad \times \int_{R^{n}} \prod_{k=1}^{n} P_{s_{0}}^{(f)}\left(d y_{k}\right) \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P^{\left(P_{s_{0 \tau}}^{(f)}\right)}(\tau, z, t, E)
\end{align*}
$$
\]

where f is a substochastic measure ${ }^{4}$ on R and

$$
P_{s, \tau}^{(f)}(E)=\int_{R} f(d x) P^{(f)}(s, x, \tau, E)
$$

Theorem 1. i) Forward equation (3) has the minimal substochastic solution $P^{(f)}(s, x, t, E)$. ii) $P^{(f)}(s, x, t, E)$ satisfies a version of Chapman-Kolmogorov equation:

$$
\begin{equation*}
P^{(f)}(s, x, u, E)=\int_{R} P^{(f)}(s, x, t, d y) P^{\left(P_{s, t}^{(f)}\right)}(t, y, u, E), \quad s \leq t \leq u \tag{5}
\end{equation*}
$$

iii) $P^{(f)}(s, x, t, E)$ satisfies (4), and is also the minimal among substochastic solutions of (4). iv) If the minimal solution is a probability measure, it is the unique solution of (3) and (4). This occurs when the following a) or b) holds and $f(R)=1$.
a) There are $q_{n}(t)$'s such that $q_{n}(t, y) \leq q_{n}(t)$ and $\sum_{n=0}^{\infty} n q_{n}(t)$ is locally $L^{\alpha}, \alpha>1$.
b) There are constants q_{n} 's such that $q_{n}(t, y) \leq q_{n}, \sum_{n=0}^{\infty} q_{n}<\infty$, and

$$
\begin{equation*}
\int_{1-\varepsilon}^{1}\left(\sum_{n=1}^{\infty} q_{n}\left(\tau-\tau^{n+1}\right)\right)^{-1} d \tau=\infty, \quad \text { for } \quad 0<\varepsilon<1 \tag{6}
\end{equation*}
$$

Proofs of i), ii) and a part of iii) are parallel to [9], using

$$
\int_{s}^{t} d \tau \int_{R} P_{0}(s, x, \tau, d y) q(\tau, z)=1-P_{0}(s, x, t, R) \leq 1-P_{0}(s, x, t, E)
$$

iv) To prove $P^{(f)}(s, x, t, R) \equiv 1$ when a) holds, let $S_{m}^{(f)}$ be the m-th approximation to the minimal solution $P^{(f)}$, that is, $S_{0}^{(f)}(s, x, t, E)$ $\equiv P_{0}(s, x, t, E)$ and

$$
\begin{aligned}
& S_{m+1}^{(f)}(s, x, t, E) \\
& =P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R} S_{m}^{(f)}(s, x, \tau, d y) \sum_{n=0}^{\infty} q_{n}(\tau, y) \\
& \quad \times \int_{R^{n}} \prod_{k=1}^{n} S_{m}^{(f)}\left(s, \tau, d y_{k}\right) \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E), \\
& \quad S_{m}^{(f)}(s, \tau, E)=\int_{R} f(d x) S_{m}^{(f)}(s, x, \tau, E)
\end{aligned}
$$

Then, integrate $q(t, y)$ on R by both sides of this to get

$$
\begin{aligned}
& 1-S_{m+1}^{(f)}(s, x, t, R) \\
& =\int_{s}^{t} d z \int_{R}\left(S_{m+1}^{(f)}(s, x, \tau, d z)-S_{m}^{(f)}(s, x, \tau, d y)\right) q(z, y) \\
& \quad+\int_{s}^{t} d z \int_{R} S_{m}^{(f)}(s, x, \tau, d y) \sum_{n=1}^{\infty} q_{n}(\tau, y)\left(1-S_{m}^{(f)}(s, \tau, R)^{n}\right)
\end{aligned}
$$

Since $q(t)=\sum_{n=0}^{\infty} q_{n}(t)$ is locally L^{α} by a), the first term is bounded by

[^1]\[

$$
\begin{aligned}
\int_{s}^{t}\left(S_{m+1}^{(t)}(s, x, \tau\right. & \left.R)-S_{m}^{(f)}(s, x, \tau, R)\right) q(\tau) d \tau \\
& \leq\left(\int_{s}^{t}\left(S_{m+1}^{(f)}-S_{m}^{(f)}\right)(s, x, \tau, R)^{\alpha /(\alpha-1)}\right)^{(\alpha-1) / \alpha}\left(\int_{s}^{t} q(\tau)^{\alpha} d \tau\right)^{1 / \alpha} \rightarrow 0 .
\end{aligned}
$$
\]

This implies

$$
\begin{equation*}
1-P^{(f)}(s, x, t, R)=\int_{s}^{t} d z \int_{R} P^{(f)}(s, x, \tau, d y) \sum_{n=1}^{\infty} p_{n}(\tau, y)\left(1-P_{s, \tau}^{(f)}(R)^{n}\right) \tag{7}
\end{equation*}
$$

Hence, it is enough to prove $P_{s, \tau}^{(f)}(R) \equiv 1$. Integrating (7) by f and putting $g(\tau) \equiv P_{s, \tau}^{(f)}(R)$,

$$
\begin{aligned}
1-g(t) & =\int_{s}^{t} d \tau \int_{R} P_{s, \tau}^{(f)}(d y) \sum_{n=1}^{\infty} q_{n}(\tau, y)\left(1-g(\tau)^{n}\right) \\
& \leq \int_{s}^{t} d \tau \sum_{n=1}^{\infty} q_{n}(\tau)\left(g(\tau)-g(\tau)^{n+1}\right) \leq \int_{s}^{t} d \tau(1-g(\tau))\left(\sum_{n=1}^{\infty} n q_{n}(\tau)\right) .
\end{aligned}
$$

Then, it is easy to prove $1-g(t)=0$, since $\sum_{n=1}^{\infty} n q_{n}(\tau)$ is locally L^{α}, $\alpha>1$. When $q_{n}(\tau, y)$'s are constants, (7), integrated by f on R, reduces to

$$
\begin{equation*}
1-g(t)=\int_{s}^{t} d \tau \sum_{n=1} q_{n} \cdot\left(g(t)-g(t)^{n+1}\right), \quad t \geq s \tag{8}
\end{equation*}
$$

But, this has 1 as a unique solution if and only if (6) is true. Hence, in case b) holds, we modify (3) to an equation with constant q_{n} 's and $\tilde{\pi}_{n}^{\prime} s$ modified as in 3 later. Then, the minimal solution of this equation has total mass 1 and it is the minimal solution of (3). The proof of the rest of iii) is omitted here.
2. Given a forward equation of integro-differential type:

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{R} P^{(f)}(s, x, t, d y) \varphi(y)=\int_{R} P^{(f)}(s, x, t, d y) B_{t}^{(f)} \varphi(y){ }^{\left.,{ }^{6}\right)} \tag{9}\\
& \int_{R} P^{(f)}(s, x, t, d y) \varphi(y) \rightarrow \varphi(x), \quad \text { as } t \downarrow s, \\
& B_{t}^{(f)} \varphi(y)= \tag{10}\\
& \\
& \quad A_{t} \varphi(y)+\sum_{n=0}^{\infty} q_{n}(t, y) \\
& \quad \times\left(\int_{R^{n}} \prod_{k=1}^{n} P_{s, t}^{(f)}\left(d y_{k}\right) \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid t, y, d z\right) \varphi(z)-\varphi(y)\right)
\end{align*}
$$

where A_{t} is the generator ${ }^{7)}$ of $P(s, x, t, E)$ in 1 . Then, solutions of (3) solve this as in

Theorem 2. Assume c) $q_{n}(t, y), q(t, y)$ and $\pi_{n}\left(y_{1}, \cdots, y_{n} \mid t, y, E\right)$ are continuous in t when other variables are fixed. $q(t, y)$ is bounded. d) $P(s, x, t, E)$ is continuous in $t(>s)$ for fixed $s, x, E \in \boldsymbol{B}(R)$. For a bounded continuous function φ, there is a bounded function $A_{t} \varphi(x)$, continuous in x and in t, such that

[^2]\[

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{R} P(s, x, t, d y) \varphi(y)=\int_{R} P(s, x, t, d y) A_{t} \varphi(y) \tag{11}
\end{equation*}
$$

\]

Then, any substochastic solution of (3) satisfies (9) for this φ.
Examples. 1) Let A_{t} be an elliptic operator with smooth, bounded coefficients:

$$
\begin{aligned}
A_{t} \varphi(x) & =\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \varphi(x)+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}} \varphi(x), \\
x & =\left(x_{1}, \cdots, x_{n}\right) \in E^{n}
\end{aligned}
$$

Then, A_{t} uniquely determines $P(s, x, t, E)$ which satisfies d) for each sufficiently smooth bounded φ with bounded derivatives up to the second order.
2) Let $P(s, x, t, E)$ be temporally homogeneous,

$$
T_{t} \varphi(x)=\int_{R} P(s, x, s+t, d y) \varphi(y)
$$

map $B(R)$ into $C(R)$, and the semigroup $\left\{T_{t}\right\}$ acting on $C(R)$ be strongly continuous in t. Then d) holds for the Hille-Yosida generator $A_{t} \equiv A$ of $\left\{T_{t}\right\}$ and each φ in $D(A) .{ }^{8)}$
3) When $P(s, x, t, E)=\delta_{x}(E)$, d) holds for each $\varphi \in B(R)$. This is the model in [9], except that g is bounded.
3. With the same initial condition of (7), consider

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{R} P^{(f)}(s, x, t, d y) \varphi(y)=\int_{R} P^{(f)}(s, x, t, d y) C_{t}^{(f)} \varphi(y),{ }^{9)} \\
& C_{t}^{(f)} \varphi(y)= A_{t} \varphi(y)+\sum_{n=0}^{\infty} \int_{R^{n}} \prod_{k=1}^{n} P_{s, t}^{(f)}\left(d y_{k}\right) q_{n}\left(y_{1}, \cdots, y_{n}, t, y\right) \\
& \times \int_{R}\left(\pi_{n}\left(y_{1}, \cdots, y_{n} \mid t, y, d z\right)-\delta_{y}(d z)\right) \varphi(z)
\end{align*}
$$

where $q_{n}\left(y_{1}, \cdots, y_{n}, t, y\right)$'s are non-negative and measurable. This corresponds to a model where the jumping time also depends on other particles. Here, (3) and (4) are replaced by

$$
\begin{align*}
P^{(f)}(s, x, t, E)= & P_{0}^{(f)}(s, x, t, E)+\int_{s}^{t} d \tau \sum_{n=0}^{\infty} \int_{R^{n+1}}^{P(f)} P^{(f)}(s, x, \tau, d y) \\
& \times \prod_{k=1}^{n} P_{s, \tau}^{(f)}\left(d y_{k}\right) q_{n}\left(y_{1}, \cdots, y_{n}, \tau, y\right) \\
& \times \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P_{0}^{(f)}(\tau, z, t, E) \\
P^{\left(P_{s 0 s}^{(f)}\right)}(s, x, t, E)= & P_{0}^{\left(P_{s o s}^{(f)}\right)}(s, x, t, E)+\int_{s}^{t} d \tau \sum_{n=0}^{\infty} \int_{R^{n+1}} P_{0}^{\left(P_{s o s}^{(f)}\right)}(s, x, \tau, d y) \\
& \times \prod_{k=1}^{n} P_{s_{0 \tau}}^{(f)}\left(d y_{k}\right) q_{n}\left(y_{1}, \cdots, y_{n}, \tau, y\right) \\
& \times \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P^{\left(P_{s o s}^{(f)}\right)}(\tau, z, t, E)
\end{align*}
$$

[^3]where
\[

$$
\begin{aligned}
P_{0}^{(f)}(s, x, \tau, E) & =E_{s, x}\left(\exp \left[-\int_{s}^{t} q^{(f)}\left(s, \sigma, X_{\sigma}\right) d \sigma\right] \chi_{E}\left(X_{t}\right)\right), \\
q^{(f)}(s, t, y) & =\sum_{n=0}^{\infty} \int_{R^{n}} \prod_{k=1}^{n} P_{s, t}^{(s)}\left(d y_{k}\right) q_{n}\left(y_{1}, \cdots, y_{n}, t, y\right) .
\end{aligned}
$$
\]

Theorem 3. Assume that there are measurable functions $q_{n}(t, y)$ such that

$$
q_{n}\left(y_{1}, \cdots, y_{n}, t, y\right) \leq q_{n}(t, y)
$$

and that $q(t, y)=\sum_{n=0}^{\infty} q_{n}(t, y)$ is bounded on compact (t, y)-sets. i) If $q_{n}(t, y)$'s satisfy a) or b) in Theorem 1, then (3') has one and only one stochastic solution for each probability measure f. This solution solves (4') and satisfies the Chapman-Kolmogorov equation (5). ii) Assume, moreover, the conditions for $q_{n}(t, y), q(t, y), \pi_{n}$ and φ in Theorem 2. Then, this solution satisfies (9') for this φ.

It can be proved that the minimal solution of (3), with above $q_{n}(t, y)$ and π_{n} replaced by

$$
\begin{aligned}
\tilde{\pi}_{n}\left(y_{1}, \cdots,\right. & \left.y_{n} \mid t, y, E\right) \\
= & q(t, y)^{-1}\left\{q_{n}\left(y_{1}, \cdots, y_{n}, t, y\right) \pi_{n}\left(y_{1}, \cdots, y_{n} \mid t, y, E\right)\right. \\
& \left.+\left(q_{n}(t, y)-q_{n}\left(y_{1}, \cdots, y_{n}, t, y\right)\right) \delta_{y}(E)\right\}
\end{aligned}
$$

is the unique stochastic solution of (3^{\prime}) and solves (4^{\prime}). By the conditions in ii), this solves (9) with π_{n} replaced by $\tilde{\pi}_{n}$ of (11), which coincides with (9^{\prime}) by $P_{s, z}^{(f)}(R) \equiv 1 .{ }^{10)}$
4. Another extension of $\mathbf{1}$ is as follows. Let $P_{0}(s, x, t, E)$ be a transition probability, majorized by $P(s, x, t, E)$ satisfying (1) and $P(s, x, t, R) \equiv 1$, such that

$$
0<P_{0}(s, x, t, R)<1, \quad \text { for } \quad s<t .
$$

Let $K_{0}(s, x, \Lambda)$ be a probability measure on $I \times R$ concentrated on $((s, \infty) \cap I) \times R$, where I is the interval of time parameters. Let $K_{0}(s, x, \Lambda)$ be measurable in (s, x) and satisfy

$$
\begin{equation*}
K_{0}\left(s, x, \Lambda \cap\left(I_{t} \times R\right)\right)=\int_{R} P_{0}(s, x, t, d y) K_{0}(t, y, \Lambda), \quad I_{t}=[t, \infty) \cap I \tag{12}
\end{equation*}
$$

Then, the alternative for the forward equation (3) is a pair of equations:

$$
\begin{align*}
P^{(f)}(s, x, t, E)= & P_{0}(s, x, t, E)+\int_{[s, t] \times R} K^{(f)}(s, x, d \tau, d y) \tag{13}\\
& \times \sum_{n=0}^{\infty} p_{n}(\tau, y) \int_{R^{n}} \prod_{k=1}^{n} P_{s, \tau}^{(f)}\left(d y_{k}\right) \\
& \times \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E),
\end{align*}
$$

10) When $P_{s, t}^{(f)}(R) \neq 1$, this method does not work. The author wrote in I of [9] that an equation of type (3) seemed more natural than (3^{\prime}). This should be corrected as follows: Both equations of type (3) and (3') have nice probabilistic meanings, and a nicer method should be found for (3^{\prime}) when there are no $q_{n}(t, y)$ as in Theorem 2, or the solution of type (3) fails to be a probability measure.

$$
\begin{align*}
K^{(f)}(s, x, \Lambda)= & K_{0}(s, x, \Lambda)+\int_{I_{s} \times R} K^{(f)}(s, x, d \tau, d z) \sum_{n=0}^{\infty} p_{n}(\tau, y) \tag{14}\\
& \times \int_{R^{n}} \prod_{k=1}^{n} P_{s, \tau}^{(f)}\left(d y_{k}\right) \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) K_{0}(\tau, z, \Lambda)
\end{align*}
$$

where $p_{n}(t, y)$'s are non-negative and $\sum_{n=0}^{\infty} p_{n}(t, y) \equiv 1$. The alternative for (4) is

$$
\begin{align*}
& P^{\left(P_{s_{0 s} s}^{(f)}\right)}(s, x, t, E) \tag{15}\\
& \quad=P_{0}(s, x, t, E)+\int_{[s, t] \times R} K_{0}(s, x, d \tau, d y) \sum_{n=0}^{\infty} p_{n}(\tau, y) \int_{R^{n}} \prod_{k=1}^{n} P_{s_{0} \tau}^{(f)}\left(d y_{k}\right) \\
& \quad \times \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P^{\left(P_{s 0 s}^{(f)}\right)}(\tau, y, t, E) .
\end{align*}
$$

This amounts to let the particles jump according to a multiplicative functional, not necessarily of type $\exp \left(-\int_{s}^{t} q\left(\sigma, X_{\sigma}\right) d \sigma\right)$. In case of $\mathbf{1}$, $p_{n}(\tau, y)=q_{n}(\tau, y) / q(\tau, y)$.

Theorem 4. i) There is a pair of substochastic measures $P^{(f)}(s$, $x, t, E)$ and a σ-finite measure $K^{(f)}(s, x, \Lambda)$ on $I \times R$ concentrated on $((s, \infty) \cap I) \times R$, which solves (13)-(14) and is the minimal among all such pairs. ii) $P^{(f)}(s, x, t, E)$ satisfies the Chapman-Kolmogorov equation (5) and

$$
\begin{equation*}
K^{(f)}\left(s, x, \Lambda \cap\left(I_{t} \times R\right)\right)=\int_{R} P^{(f)}(s, x, t, d y) K^{\left(P_{s, t}^{(f)}\right)}(t, y, \Lambda) \tag{16}
\end{equation*}
$$

iii) $P^{(f)}(s, x, t, E)$ is also the minimal substochastic solution of (15). iv) If $P^{(f)}(s, x, t, R)=1$, then the minimal pair gives the unique solution of (13)-(14) and (15). This holds, if

$$
\int_{[s, t] \times R} K^{(f)}(s, x, d \tau, d y) \sum_{n=1}^{\infty} n p_{n}(\tau, y)<\infty, \quad t \geq s, \quad \text { and } \quad f(R)=1
$$

References

[1] E. T. Harris: Branching Processes. Berlin (1963).
[2] M. Kac: Probability and Related Topics in Physical Sciences. New York (1959).
[3] H. McKean: Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rat. Mech. Anal., 21, 343-367 (1966).
[4] -: A class of Markov processes associated with non-linear parabolic equations. Proc. Nat. Acad. Sc., 56, 1907-1911 (1966).
[5] H. McKean: Propagation of chaos for a class of non-linear parabolic equations. Lecture Series in Differential Equations, Session 7, Catholic Univ., 41-57 (1967).
[6] H. Tanaka: Propagation of chaos for certain Markov processes of jump type with non-linear generators. Proc. Japan Acad., 45, 449-452 (1969).
[7] S. Tanaka: An extension of Wild's sum for solving certain non-linear equation of measures. Proc. Japan Acad., 44, 884-889 (1968).
[8] T. Ueno: A class of Markov processes with bounded non-linear generators. Japanese J. Math., 38, 19-38 (1969).
[9] -: A class of purely discontinuous Markov processes with interactions. I, II. Proc. Japan Acad., 45, 348-353, 437-440 (1969).

[^0]: 1) Research supported in part by the National Science Foundation, contract NSF GP 7110, at Stanford University, Stanford, California.
 2) For the intuitive meanings of the quantities, the reader can consult [9].
 3) The 0 -th term of the sum is $q_{0}(\tau, y) \int_{R} \pi_{0}(\tau, y, d z) P_{0}(\tau, z, t, E)$.
[^1]: 4) A measure is called stochastic (substochastic), if it has total mass 1 (not more than 1).
[^2]: 5) This condition was adopted by H. Tanaka [6] and S. Tanaka [7] for a temporally homogeneous model. The relation between (6) and (8) owes to Dynkin. The reader can consult Harris [1] p. 106 for the proof.
 6) H. Tanaka wrote to the author that he considered a similar equation related with [6].
 7) Here, the term generator is used loosely, instead of the expression in Theorem 2.
[^3]: 8) $B(R)$ and $C(R)$ are the set of all real-valued functions on R, measurable and continuous, respectively. $D(A)$ is the domain of A.
 9) Boltzmann equation with bounded cross section can be rewritten in this form.
