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A Class of Markov Processes with Interactions.

By Tadashi UENO
University of Tokyo and Stanford University

(Comm. by Zyoiti SUETUNA, M. J, A., Oct. 13, 1969)

Here, we consider a motion of one particle under the interactions
between an infinite number of similar particles. Each particle moves
independently in a Markovian way until an exponential jumping time
comes, and it jumps with a hitting measure which depends on other
particles. A model, where the jumping time also depends on other
particles, is discussed under auxiliary conditions. These results
extend [9].

The models here came into our interest through the works of
McKean [3-5], which started with Kac’s model of Boltzmann equation
[2].

1o Let P(s, x, t, E) be a transition probability on a locally compact
space R with countable bases and topological Borel field B(R). Assume
P(s, x, t, R) 1 and
( 1 P(s, x, t, U)-I, as t-s-0, or open U containing x.
Let q(t, y)be a non-negative, measurable 2unction, bounded on com-
pact (t, y)-sets. Define

(2) Po(s, x, t, E)-Es, (expI-:q(a, X(w))df]zE(Xt(w))
where Xt(w) is a measurable Markov process with transition probabil-
ity P(s, x, t, E). E,(.) is the expectation conditioned that the particle
starts at x at time s. This set up is possible by (1). Let q(t,y),
n-O, 1, be non-negative, measurable and q(t, y)==o qn(t, Y), and
let n(Yl, ", Yn It, Y) be probability measures on (R, B(R)), measurable
in (Yl, ", Yn, , Y) for fixed E e B(R). 2)

Consider a forward equation and a version o backward equation"
( 3 ) P()(s, x, t, E)

--Po(s x, t, E)+ dr P)(s, x, v, dy) qn(t, y) ] P()(dy)
R n=O R k=l

R

1) Research supported in part by the National Science Foundation, contract
NSF GP 7110, at Stanford University, Stanford, California.

2) For the intuitive meanings of the quantities, the reader can consult [9].

y Po(r, z, t,3) The 0-th term of the sum is qo(r,y) z(r’ dz) E).
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( 4 ) P(e}o2)(s, x, t, E)

tdrRPo(s,Po(s, x, t, E) + x, v, q(v, y)
=0

}( R k=l--so
P(])(dy) fRn(yl Yn T, Y, dz)P(P[)(T t, E),

where f is a substochastic measure) on R and

P(])(E)=[ f(dx)P()(s, x, E).8v JR

Theorem 1. i) Forward equation (3) has the minimal sub-
stochastic solution P()(s, x, t, E). ii) P(])(s, x, t, E) satisfies a version

of Chapman-Kolmogorov equation"

(5) P(f)(s,x,u,E)- P()(s,x,t, dy) ,t)(t,y,u,E), sgtgu.
R

iii) P(f)(s, x, t, E) satisfies (4), and is also the minimal among sub-
stochastic solutions of (4). iv) If the minimal solution is a probability
measure, it is the unique solution of (3) and (4). This occurs when
the following a) or b) holds and f(R)-1.
a) There are qn(t)’8 such that q(t, y) g qn(t) and =o nq(t) is locally

L",1
b) There are constants q’s such that q(t, y) g qn, =o qn, and

( 6 ) qn(V-- r +) dr-, for O< e< 1.
1-

Proofs o i), ii) and a part of iii) are parallel to [9], using

iv) To prove P()(s, x, t, R) 1 when a) holds, let S be the m-th appro-
ximation to the minimal solution P), that is, S)(s, x, t, E)
P0(s, x, t, E) and
S() s x, t, E)

=P,(, z, t, )+ dr S(, z, r, ) q(r, )
R n=0

S)(s, , dye) "", y I, y, dz)Po(v, z, t, E),
R

S)(s, , E) -[ ((dx)S>(s, x, , E).
JR"

Then, integrate q(t, y) on R by both sides of this to get
1 .() (s x,t,R)+lk

-dz- ,--m(’(f) 1(8’x+ V, dz)--Sf)(8, X, , dy))q(z, y)
Js JR

+ d S(, , , d) q(r, V)(1-S(, r, R)).

Since q(t)-o q(t) is loeally L by a), the first term is bounded by

4) A measure is called stochastic (substochastic), if it has total mass 1 (not
more than 1).
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t R)--S(f)(s, R))q(r)dr(S/(s, x, r, x, r,

< (. -S)(, z, R)/- q(r)dr 0.

This implies

R n=l

Hence, it is enough to prove P()(R)-I Integrating (7) by f and
putting g(v)P()(R)

1-- g(t)- fdr [ P()(dy) qn(r y)(1-- g(r)n)

dr qn(r)(g(r)-- g(r) +) dr(l- g(r)) nq(r)

Then, it is easy to prove 1--g(t)-0, since = nqn(V) is locally L,
a>l. When q(v,y)’s are constants, (7), integrated by f on R,
reduces to

( 8 ) 1- g(t)- it dv qn" (g(t)- g(t) +), t S.
Js

But, this has 1 as a unique solution if and only if (6) is true. Hence,
in case b) holds, we modify (3) to an equation with constant q’s and
fin’S modified as in later. Then, the minimal solution of this equation
has total mass 1 and it is the minimal solution of (3). The proof of
the rest of iii) is omitted here.

2. Given a forward equation of integro-differential type"

[ P()(s, x, t, dy)e(y)- [ P()(s, x, t, dy)B] 6)

(9)
P(f)(s, x, dy)(y)(x), as $ s,t, t

R

(10) Bx)(y)-Ate(y) + q(t, y)
=0

where At is the generator) of P(s, x, t, E) in 1. Then, solutions of (3)
solve this as in

Theorem 2. Assume c) qn(t, Y), q(t, y) and n(Y, ", Y t, y, E)
are continuous in t when other ariables are fixed, q(t, y) is bounded, d)
P(s, x, t, E) is continuous in t(>s) for fixed s, x, E e B(R). For a
bounded continuous function , there is a bounded function Ate(x),
continuous in x and in t, such that

5) This condition was adopted by H. Tanaka [6] and S. Tanaka [7] for a
temporally homogeneous model. The relation between (6) and (8)owes to Dynkin.
The reader can consult Harris [1] p. 106 for the proof.

6) H. Tanaka wrote to the author that he considered a similar equation
related with [6].

7) Here, the term generator is used loosely, instead of the expression in
Theorem 2.
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(11)
3t aP(s, x, t, dy)(y)= aP(s’ x, t, dy)At(y).

Then, any substochastic solution of (3) satisfies (9) for this q.
txamples. 1) Let A be an elliptic operator with smooth, bounded

coefficients"

AtF(x)- a(x) ---(f(x),
.: OxOx(x) + 1b(x)

X----(Xl, ",Xn) e En.
Then, At uniquely determines P(s, x, t,E) which satisfies d)for each
sufficiently smooth bounded with bounded derivatives up to the
second order.

2) Let P(s, x, t, E) be temporally homogeneous,

Try(X) --.[P(s, x, s + t, dy)q(y)

map B(R) into C(R), and the semigroup {Tt} acting on C(R) be
strongly continuous in t. Then d) holds for the Hille-Yosida generator
AtA o {Tt} and each in D(A).)

3) When P(s, x, t, E)=x(E), d) holds for each (? e B(R). This is
the model in [9], except that g is bounded.

:. With the same initial condition of (7), consider

(9’) t P()(s x, t, dy)(y)- P()(s, x, t, dy)C)(f(y),)

=o (f)(10’) Ci)(?(y) A(y)+ I P, (dy)qn(y, ., Yn, , Y)
R k=l

[ (7n(Y, "’’, y It, y, dz)--(dz))F(z)
R

where q(y, ..., y, t, y)’s are non-negative and measurable. This
corresponds to a model where the jumping time also depends on other
particles. Here, (3) and (4) are replaced by

(3’) P(f)(8, x, t, E)-- P)(s, x, t, E) + dv
J Rn+l

(f( P,: (dy)qn(Yi, .’’, Yn, , Y)

[ (Y, ", Yn IV, Y, dz)P)(v, z, t, E)
JR

(4’) r)(())(s,x,t,E)o ---o.o)(s,x,t,E)+ d o.o)(s,x,,dy)
n=O Rn+l

1-[ Pfo)(dy)qn(Ya, Yn, , Y)

f n(Y, ", Yn I, Y, dz)P(e[)) (, z, t, E)
JR

8) B(R) and C(R) are the set of all real-valued functions on R, measurable
and continuous, respectively. D(A) is the domain of A.

9) Boltzmann equation with bounded cross section can be rewritten in this
form.
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where

P(of)(s, x, v, E)-Es, (exp[--S:q(f)(s, a, X)daI E(Xt))
no fq(f)(s, t, y)= ]-[ Ps,, (dy)qn(Yl, Yn, t,

Rnk=l

Theorem 3. Assume that there are measurable functions qn(t, Y)
such that

qn(Yl, "", Yn, t, y)< qn(t, Y)
and that q(t, y)-,=o qn(t, y) is bounded on compact (t, y)-sets, i) If
qn(t, y)’s satisfy a) or b) in Theorem 1, then (3’) has one and only one
stochastic solution for each probability measure f. This solution
solves (4’) and satisfies the Chapman-Kolmogorov equation (5). ii)
Assume, moreover, the conditions for qn(t, y), q(t, y), and 9 in
Theorem 2. Then, this solution satisfies (9’) for this .

It can be proved that the minimal solution of (3), with above
q(t, y) and replaced by

(y, ..., Yn It, Y, E)
(11) q(t, Y)-{qn(Y, ", Yn, t, Y)=n(Y, ", Yn It, y, E)

+ (qn(t, Y)--qn(Y,’’’, Yn, t, y))(v(E)},
is the unique stochastic solution of (3’) and solves (4’). By the condi-
tions in ii), this solves (9) with replaced by fin Of (11), which
coincides with (9’) by P()(R)--1 0)

4. Another extension of 1 is as follows. Let P0(s, x, t, E) be a
transition probability, majorized by P(s,x, t,E) satisfying (1) and
P(s, x, t, R) 1, such that

O(Po(s,x,t,R)(l, or s(t.
Let Ko(s,x,A) be a probability measure on IxR concentrated on
((s, oo) I) x R, where I is the interval of time parameters. Let
Ko(s, x, A) be measurable in (s, x) and satisfy

(12) Ko(s, x, A (It x R)) f Po(s, x, t, dy)Ko(t, y, A), It= [t, oo) C I.
J

Then, the alternative for the forward equation (3) is a pair of equations"

(13) PZ(s,x,t,E)-Po(s,x,t,E)+ KZ(s,x, dr, dy)
[s, t] x I

X Pn(Z" Y) P(X)(dy)
n=O R k=l

X f 7n(yl, ", Y It, Y, dz)Po(r, z, t, E),
R

10) When P(f)(R)=/=I this method does not work. The author wrote in I of [9]S,t

that an equatio.n of type (3) seemed more natural than (3’). This should be corrected
as follows: Both equations of type (3) and (3’) have nice probabilistic meanings,
and a nicer method should be found for (3’) when there are no qn(t,y) as in
Theorem 2, or the solution of type (3) fails to be a probability measure.
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(14) K()(s, x, A) K0(s, x, A) + K f) (s, x, dr, dz) , p(v y)
IsR n=O

l-[ p(f) (YI, Yn v, Y, dz)Ko(v, z, A),
Rn =1 ’(dy) 7:

where p(t, y)’s are non-negative and ,=0 p(t, y)--1. The alternative
or (4) is

p (f)(15) P( o)(s, x, t, E)

Po(s, x, t, E) + Ko(s, x, dr, dy) pn(r, Y) -oP(f)(dY)
[s, tJR n=0 R =1

j" 7(Vl, ..’, Y iv, Y, az)r ,os , y, t, E).
R

This amounts to let the particles jump according to a multiplicative

functional, not necessarily o type exp(-_[:q(a,X)da). In case of 1,

Pn(V, Y)--qn(:, y)/q(v, y).
Theorem 4. i) There is a pair of substochastic measures P(f.)(s,

x, t,E) and a a-finite measure K(f)(s, x, A) on IR concentrated on
((s, c) I) R, which solves (13)-(14) and is the minimal among all
such pairs, ii) P(f)(s, x, t, E) satisfies the Chapman-Kolmogorov
equation (5) and

(16) K(X)(s, x, A (It R))- _-[RP(I)(s’ x, t, dy)K(Pf,2)(t, y, A).

iii) P(X)(s, x, t, E) is also the minimal substochastic solution of (15).
iv) If P(X)(s, x, t, R)= 1, then the minimal pair gives the unique solution
of (13)-(14) and (15). This holds, if

K(X)(s, x, dr, dy) , npn(V, y) < o, t>_ s, and f(R)- 1.
Es, tJR n=l
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