144. A Class of Markov Processes with Interactions. I^{1}

By Tadashi UENO

University of Tokyo and Stanford University

(Comm. by Zyoiti SUETUNA, M. J. A., Oct. 13, 1969)

Here, we consider a motion of one particle under the interactions between an infinite number of similar particles. Each particle moves independently in a Markovian way until an exponential jumping time comes, and it jumps with a hitting measure which depends on other particles. A model, where the jumping time also depends on other particles, is discussed under auxiliary conditions. These results extend [9].

The models here came into our interest through the works of McKean [3-5], which started with Kac's model of Boltzmann equation [2].

1. Let P(s, x, t, E) be a transition probability on a locally compact space R with countable bases and topological Borel field B(R). Assume $P(s, x, t, R) \equiv 1$ and

(1) $P(s, x, t, U) \rightarrow 1$, as $t-s \rightarrow 0$, for open U containing x. Let q(t, y) be a non-negative, measurable function, bounded on compact (t, y)-sets. Define

(2)
$$P_0(s, x, t, E) = E_{s, x} \left(\exp \left[-\int_s^t q(\sigma, X_\sigma(w)) d\sigma \right] \chi_E(X_t(w)) \right),$$

where $X_t(w)$ is a measurable Markov process with transition probability P(s, x, t, E). $E_{s,x}(\cdot)$ is the expectation conditioned that the particle starts at x at time s. This set up is possible by (1). Let $q_n(t, y)$, $n=0, 1, \cdots$ be non-negative, measurable and $q(t, y) \equiv \sum_{n=0}^{\infty} q_n(t, y)$, and let $\pi_n(y_1, \cdots, y_n | t, y)$ be probability measures on $(R, \mathbf{B}(R))$, measurable in (y_1, \cdots, y_n, t, y) for fixed $E \in \mathbf{B}(R)$.²⁾

Consider a forward equation and a version of backward equation: (3) $P^{(f)}(s, x, t, E)$

$$=P_{0}(s, x, t, E) + \int_{s}^{t} d\tau \int_{R} P^{(f)}(s, x, \tau, dy) \sum_{n=0}^{\infty} q_{n}(t, y) \int_{R^{n}} \prod_{k=1}^{n} P^{(f)}_{s,\tau}(dy_{k}) \\ \times \int_{R} \pi_{n}(y_{1}, \cdots, y_{n} | \tau, y, dz) P_{0}(\tau, z, t, E),^{3}$$

3) The 0-th term of the sum is $q_0(\tau, y) \int_{R} \pi_0(\tau, y, dz) P_0(\tau, z, t, E)$.

¹⁾ Research supported in part by the National Science Foundation, contract NSF GP 7110, at Stanford University, Stanford, California.

²⁾ For the intuitive meanings of the quantities, the reader can consult [9].

T. UENO

 $(4) \quad P^{(P^{(f)}_{sos})}(s, x, t, E)$

$$=P_0(s, x, t, E) + \int_s^t d\tau \int_R P_0(s, x, \tau, dy) \sum_{n=0}^{\infty} q_n(\tau, y)$$

$$\times \int_{R^n} \prod_{k=1}^n P_{s_0\tau}^{(f)}(dy_k) \int_R \pi_n(y_1, \cdots, y_n | \tau, y, dz) P^{(P_{s_0\tau}^{(f)})}(\tau, z, t, E),$$

where f is a substochastic measure⁴⁾ on R and

 $P_{s,\tau}^{(f)}(E) = \int_{R} f(dx) P^{(f)}(s, x, \tau, E).$

Theorem 1. i) Forward equation (3) has the minimal substochastic solution $P^{(f)}(s, x, t, E)$. ii) $P^{(f)}(s, x, t, E)$ satisfies a version of Chapman-Kolmogorov equation:

(5)
$$P^{(f)}(s, x, u, E) = \int_{R} P^{(f)}(s, x, t, dy) P^{(P^{(f)}_{s,t})}(t, y, u, E), \quad s \le t \le u.$$

iii) $P^{(f)}(s, x, t, E)$ satisfies (4), and is also the minimal among substochastic solutions of (4). iv) If the minimal solution is a probability measure, it is the unique solution of (3) and (4). This occurs when the following a) or b) holds and f(R)=1.

- a) There are $q_n(t)$'s such that $q_n(t, y) \le q_n(t)$ and $\sum_{n=0}^{\infty} nq_n(t)$ is locally $L^{\alpha}, \alpha > 1$.
- b) There are constants q_n 's such that $q_n(t, y) \le q_n$, $\sum_{n=0}^{\infty} q_n < \infty$, and

(6)
$$\int_{1-\varepsilon}^{1} \left(\sum_{n=1}^{\infty} q_n(\tau-\tau^{n+1}) \right)^{-1} d\tau = \infty, \quad for \quad 0 < \varepsilon < 1.$$

Proofs of i), ii) and a part of iii) are parallel to [9], using

$$\int_{s}^{t} d\tau \int_{R} P_{0}(s, x, \tau, dy) q(\tau, z) = 1 - P_{0}(s, x, t, R) \le 1 - P_{0}(s, x, t, E).$$

iv) To prove $P^{(f)}(s, x, t, R) \equiv 1$ when a) holds, let $S_m^{(f)}$ be the *m*-th approximation to the minimal solution $P^{(f)}$, that is, $S_0^{(f)}(s, x, t, E) \equiv P_0(s, x, t, E)$ and

$$S_{m+1}^{(f)}(s, x, t, E) = P_0(s, x, t, E) + \int_s^t d\tau \int_R S_m^{(f)}(s, x, \tau, dy) \sum_{n=0}^{\infty} q_n(\tau, y) \\ \times \int_{R^n} \prod_{k=1}^n S_m^{(f)}(s, \tau, dy_k) \int_R \pi_n(y_1, \cdots, y_n | \tau, y, dz) P_0(\tau, z, t, E), \\ S_m^{(f)}(s, \tau, E) = \int_R f(dx) S_m^{(f)}(s, x, \tau, E).$$

Then, integrate q(t, y) on R by both sides of this to get

$$\begin{split} 1 - S_{m+1}^{(f)}(s, x, t, R) \\ &= \int_{s}^{t} dz \int_{R} (S_{m+1}^{(f)}(s, x, \tau, dz) - S_{m}^{(f)}(s, x, \tau, dy)) q(z, y) \\ &+ \int_{s}^{t} dz \int_{R} S_{m}^{(f)}(s, x, \tau, dy) \sum_{n=1}^{\infty} q_{n}(\tau, y) (1 - S_{m}^{(f)}(s, \tau, R)^{n}). \end{split}$$

Since $q(t) = \sum_{n=0}^{\infty} q_n(t)$ is locally L^{α} by a), the first term is bounded by

642

⁴⁾ A measure is called stochastic (substochastic), if it has total mass 1 (not more than 1).

Class of Markov Processes with Interactions. I

$$\begin{split} \int_{s}^{t} (S_{m+1}^{(t)}(s,x,\tau,R) - S_{m}^{(f)}(s,x,\tau,R))q(\tau)d\tau \\ & \leq \left(\int_{s}^{t} (S_{m+1}^{(f)} - S_{m}^{(f)})(s,x,\tau,R)^{\alpha/(\alpha-1)}\right)^{(\alpha-1)/\alpha} \left(\int_{s}^{t} q(\tau)^{\alpha}d\tau\right)^{1/\alpha} \to 0. \end{split}$$

This implies

(7) $1 - P^{(f)}(s, x, t, R) = \int_{s}^{t} dz \int_{R} P^{(f)}(s, x, \tau, dy) \sum_{n=1}^{\infty} p_{n}(\tau, y) (1 - P^{(f)}_{s,\tau}(R)^{n}).$ Hence, it is enough to prove $P^{(f)}_{s,\tau}(R) \equiv 1$. Integrating (7) by f and putting $g(\tau) \equiv P^{(f)}_{s,\tau}(R)$,

$$1 - g(t) = \int_{s}^{t} d\tau \int_{R} P_{s,\tau}^{(f)}(dy) \sum_{n=1}^{\infty} q_{n}(\tau, y) (1 - g(\tau)^{n}) \\ \leq \int_{s}^{t} d\tau \sum_{n=1}^{\infty} q_{n}(\tau) (g(\tau) - g(\tau)^{n+1}) \leq \int_{s}^{t} d\tau (1 - g(\tau)) \left(\sum_{n=1}^{\infty} nq_{n}(\tau) \right).$$

Then, it is easy to prove 1-g(t)=0, since $\sum_{n=1}^{\infty} nq_n(\tau)$ is locally L^{α} , $\alpha > 1$. When $q_n(\tau, y)$'s are constants, (7), integrated by f on R, reduces to

(8)
$$1-g(t) = \int_{s}^{t} d\tau \sum_{n=1}^{s} q_{n} \cdot (g(t) - g(t)^{n+1}), \quad t \ge s$$

But, this has 1 as a unique solution if and only if (6) is true. Hence, in case b) holds, we modify (3) to an equation with constant q_n 's and π_n 's modified as in 3 later. Then, the minimal solution of this equation has total mass 1 and it is the minimal solution of (3). The proof of the rest of iii) is omitted here.

2. Given a forward equation of integro-differential type:

$$(9) \qquad \frac{\partial}{\partial t} \int_{R} P^{(f)}(s, x, t, dy)\varphi(y) = \int_{R} P^{(f)}(s, x, t, dy)B_{t}^{(f)}\varphi(y),^{\epsilon_{1}}$$
$$\int_{R} P^{(f)}(s, x, t, dy)\varphi(y) \rightarrow \varphi(x), \qquad \text{as } t \downarrow s,$$

(10)
$$B_{t}^{(f)}\varphi(y) = A_{t}\varphi(y) + \sum_{n=0}^{\infty} q_{n}(t, y)$$
$$\times \left(\int_{\mathbb{R}^{n}} \prod_{k=1}^{n} P_{s,t}^{(f)}(dy_{k}) \int_{\mathbb{R}} \pi_{n}(y_{1}, \cdots, y_{n} | t, y, dz) \varphi(z) - \varphi(y) \right)$$

where A_t is the generator⁷ of P(s, x, t, E) in 1. Then, solutions of (3) solve this as in

Theorem 2. Assume c) $q_n(t, y)$, q(t, y) and $\pi_n(y_1, \dots, y_n | t, y, E)$ are continuous in t when other variables are fixed. q(t, y) is bounded. d) P(s, x, t, E) is continuous in t(>s) for fixed $s, x, E \in B(R)$. For a bounded continuous function φ , there is a bounded function $A_i\varphi(x)$, continuous in x and in t, such that

No. 8]

⁵⁾ This condition was adopted by H. Tanaka [6] and S. Tanaka [7] for a temporally homogeneous model. The relation between (6) and (8) owes to Dynkin. The reader can consult Harris [1] p. 106 for the proof.

⁶⁾ H. Tanaka wrote to the author that he considered a similar equation related with [6].

⁷⁾ Here, the term generator is used loosely, instead of the expression in Theorem 2.

T. UENO

(11)
$$\frac{\partial}{\partial t} \int_{R} P(s, x, t, dy) \varphi(y) = \int_{R} P(s, x, t, dy) A_{t} \varphi(y).$$

Then, any substochastic solution of (3) satisfies (9) for this φ .

Examples. 1) Let A_t be an elliptic operator with smooth, bounded coefficients:

$$A_{t}\varphi(x) = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \varphi(x) + \sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}} \varphi(x),$$

$$x = (x_{1}, \cdots, x_{n}) \in E^{n}.$$

Then, A_t uniquely determines P(s, x, t, E) which satisfies d) for each sufficiently smooth bounded φ with bounded derivatives up to the second order.

2) Let P(s, x, t, E) be temporally homogeneous,

$$T_t\varphi(x) = \int_{\mathbb{R}} P(s, x, s+t, dy)\varphi(y)$$

map B(R) into C(R), and the semigroup $\{T_t\}$ acting on C(R) be strongly continuous in t. Then d) holds for the Hille-Yosida generator $A_t \equiv A$ of $\{T_t\}$ and each φ in D(A).⁸⁾

3) When $P(s, x, t, E) = \delta_x(E)$, d) holds for each $\varphi \in B(R)$. This is the model in [9], except that g is bounded.

3. With the same initial condition of (7), consider

$$(9') \qquad \frac{\partial}{\partial t} \int_{R} P^{(f)}(s, x, t, dy) \varphi(y) = \int_{R} P^{(f)}(s, x, t, dy) C_{t}^{(f)} \varphi(y),^{9}$$

(10')
$$C_{\iota}^{(f)}\varphi(y) = A_{\iota}\varphi(y) + \sum_{n=0}^{\infty} \int_{\mathbb{R}^n} \prod_{k=1}^n P_{s,\iota}^{(f)}(dy_k) q_n(y_1, \cdots, y_n, t, y)$$
$$\times \int_{\mathbb{R}^n} (\pi_n(y_1, \cdots, y_n | t, y, dz) - \delta_y(dz))\varphi(z)$$

where $q_n(y_1, \dots, y_n, t, y)$'s are non-negative and measurable. This corresponds to a model where the jumping time also depends on other particles. Here, (3) and (4) are replaced by

$$(3') \quad P^{(f)}(s, x, t, E) = P_0^{(f)}(s, x, t, E) + \int_s^t d\tau \sum_{n=0}^{\infty} \int_{R^{n+1}}^{P^{(f)}} P^{(f)}(s, x, \tau, dy) \\ \times \prod_{k=1}^n P_{s,\tau}^{(f)}(dy_k) q_n(y_1, \cdots, y_n, \tau, y) \\ \times \int_R \pi_n(y_1, \cdots, y_n | \tau, y, dz) P_0^{(f)}(\tau, z, t, E) \\ (4') \quad P^{(p_{s_0s}^{(f)})}(s, x, t, E) = P_0^{(p_{s_0s}^{(f)})}(s, x, t, E) + \int_s^t d\tau \sum_{n=0}^{\infty} \int_{R^{n+1}} P_0^{(p_{s_0s}^{(f)})}(s, x, \tau, dy) \\ \times \prod_{k=1}^n P_{s_0\tau}^{(f)}(dy_k) q_n(y_1, \cdots, y_n, \tau, y) \\ \times \int_R \pi_n(y_1, \cdots, y_n | \tau, y, dz) P^{(p_{s_0s}^{(f)})}(\tau, z, t, E)$$

644

[Vol. 45,

⁸⁾ B(R) and C(R) are the set of all real-valued functions on R, measurable and continuous, respectively. D(A) is the domain of A.

⁹⁾ Boltzmann equation with bounded cross section can be rewritten in this form.

Class of Markov Processes with Interactions. I

where

No. 8]

$$P_{0}^{(f)}(s, x, \tau, E) = E_{s,x} \left(\exp \left[-\int_{s}^{t} q^{(f)}(s, \sigma, X_{\sigma}) d\sigma \right] \chi_{E}(X_{t}) \right),$$
$$q^{(f)}(s, t, y) = \sum_{n=0}^{\infty} \int_{R^{n}} \prod_{k=1}^{n} P_{s,t}^{(f)}(dy_{k}) q_{n}(y_{1}, \cdots, y_{n}, t, y).$$

Theorem 3. Assume that there are measurable functions $q_n(t, y)$ such that

 $q_n(y_1, \cdots, y_n, t, y) \leq q_n(t, y)$

and that $q(t, y) = \sum_{n=0}^{\infty} q_n(t, y)$ is bounded on compact (t, y)-sets. i) If $q_n(t, y)$'s satisfy a) or b) in Theorem 1, then (3') has one and only one stochastic solution for each probability measure f. This solution solves (4') and satisfies the Chapman-Kolmogorov equation (5). ii) Assume, moreover, the conditions for $q_n(t, y)$, q(t, y), π_n and φ in Theorem 2. Then, this solution satisfies (9') for this φ .

It can be proved that the minimal solution of (3), with above $q_n(t, y)$ and π_n replaced by

(11)
$$\begin{aligned} \tilde{\pi}_{n}(y_{1}, \cdots, y_{n} | t, y, E) \\ = q(t, y)^{-1} \{ q_{n}(y_{1}, \cdots, y_{n}, t, y) \pi_{n}(y_{1}, \cdots, y_{n} | t, y, E) \\ + (q_{n}(t, y) - q_{n}(y_{1}, \cdots, y_{n}, t, y)) \delta_{y}(E) \}, \end{aligned}$$

is the unique stochastic solution of (3') and solves (4'). By the conditions in ii), this solves (9) with π_n replaced by $\tilde{\pi}_n$ of (11), which coincides with (9') by $P_{s,\tau}^{(f)}(R) \equiv 1.^{10}$

4. Another extension of 1 is as follows. Let $P_0(s, x, t, E)$ be a transition probability, majorized by P(s, x, t, E) satisfying (1) and $P(s, x, t, R) \equiv 1$, such that

 $0 < P_0(s, x, t, R) < 1$, for s < t.

Let $K_0(s, x, \Lambda)$ be a probability measure on $I \times R$ concentrated on $((s, \infty) \cap I) \times R$, where I is the interval of time parameters. Let $K_0(s, x, \Lambda)$ be measurable in (s, x) and satisfy

(12)
$$K_0(s, x, \Lambda \cap (I_t \times R)) = \int_R P_0(s, x, t, dy) K_0(t, y, \Lambda), \qquad I_t = [t, \infty) \cap I.$$

Then, the alternative for the forward equation (3) is a pair of equations:

(13)
$$P^{(f)}(s, x, t, E) = P_{0}(s, x, t, E) + \int_{[s, t] \times R} K^{(f)}(s, x, d\tau, dy) \\ \times \sum_{n=0}^{\infty} p_{n}(\tau, y) \int_{R^{n}} \prod_{k=1}^{n} P^{(f)}_{s, \tau}(dy_{k}) \\ \times \int_{R} \pi_{n}(y_{1}, \cdots, y_{n} | \tau, y, dz) P_{0}(\tau, z, t, E),$$

645

¹⁰⁾ When $P_{s,t}^{(f)}(R) \neq 1$, this method does not work. The author wrote in I of [9] that an equation of type (3) seemed more natural than (3'). This should be corrected as follows: Both equations of type (3) and (3') have nice probabilistic meanings, and a nicer method should be found for (3') when there are no $q_n(t, y)$ as in Theorem 2, or the solution of type (3) fails to be a probability measure.

T. UENO

[Vol. 45,

(14)
$$K^{(f)}(s, x, \Lambda) = K_{0}(s, x, \Lambda) + \int_{I_{s \times R}} K^{(f)}(s, x, d\tau, dz) \sum_{n=0}^{\infty} p_{n}(\tau, y) \\ \times \int_{\mathbb{R}^{n}} \prod_{k=1}^{n} P^{(f)}_{s,\tau}(dy_{k}) \int_{\mathbb{R}} \pi_{n}(y_{1}, \cdots, y_{n} | \tau, y, dz) K_{0}(\tau, z, \Lambda),$$

where $p_n(t, y)$'s are non-negative and $\sum_{n=0}^{\infty} p_n(t, y) \equiv 1$. The alternative for (4) is

(15)
$$P^{(P_{s_{0}s}^{(f)})}(s, x, t, E) = P_{0}(s, x, t, E) + \int_{[s, t] \times R} K_{0}(s, x, d\tau, dy) \sum_{n=0}^{\infty} p_{n}(\tau, y) \int_{R^{n}} \prod_{k=1}^{n} P_{s_{0}\tau}^{(f)}(dy_{k}) \times \int_{R} \pi_{n}(y_{1}, \cdots, y_{n} | \tau, y, dz) P^{(P_{s_{0}s}^{(f)})}(\tau, y, t, E).$$

This amounts to let the particles jump according to a multiplicative functional, not necessarily of type $\exp\left(-\int_{s}^{t}q(\sigma, X_{s})d\sigma\right)$. In case of 1, $p_{n}(\tau, y) = q_{n}(\tau, y)/q(\tau, y)$.

Theorem 4. i) There is a pair of substochastic measures $P^{(f)}(s, x, t, E)$ and a σ -finite measure $K^{(f)}(s, x, \Lambda)$ on $I \times R$ concentrated on $((s, \infty) \cap I) \times R$, which solves (13)-(14) and is the minimal among all such pairs. ii) $P^{(f)}(s, x, t, E)$ satisfies the Chapman-Kolmogorov equation (5) and

(16)
$$K^{(f)}(s, x, \Lambda \cap (I_t \times R)) = \int_R P^{(f)}(s, x, t, dy) K^{(P_{s,t}^{(f)})}(t, y, \Lambda).$$

iii) $P^{(f)}(s, x, t, E)$ is also the minimal substochastic solution of (15). iv) If $P^{(f)}(s, x, t, R) = 1$, then the minimal pair gives the unique solution of (13)-(14) and (15). This holds, if

$$\int_{[s,t]\times R} K^{(f)}(s,x,d\tau,dy) \sum_{n=1}^{\infty} np_n(\tau,y) < \infty, \quad t \ge s, \quad and \quad f(R) = 1.$$

References

- [1] E. T. Harris: Branching Processes. Berlin (1963).
- [2] M. Kac: Probability and Related Topics in Physical Sciences. New York (1959).
- [3] H. McKean: Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rat. Mech. Anal., 21, 343-367 (1966).
- [4] ——: A class of Markov processes associated with non-linear parabolic equations. Proc. Nat. Acad. Sc., 56, 1907–1911 (1966).
- [5] H. McKean: Propagation of chaos for a class of non-linear parabolic equations. Lecture Series in Differential Equations, Session 7, Catholic Univ., 41-57 (1967).
- [6] H. Tanaka: Propagation of chaos for certain Markov processes of jump type with non-linear generators. Proc. Japan Acad., 45, 449-452 (1969).
- [7] S. Tanaka: An extension of Wild's sum for solving certain non-linear equation of measures. Proc. Japan Acad., 44, 884-889 (1968).
- [8] T. Ueno: A class of Markov processes with bounded non-linear generators. Japanese J. Math., 38, 19-38 (1969).
- [9] —: A class of purely discontinuous Markov processes with interactions. I, II. Proc. Japan Acad., 45, 348-353, 437-440 (1969).

646