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By an ordered semigroup we mean a semigroup with a simple
order which is compatible with the semigroup operation. In this note
we denote by S an ordered semigroup. An element x of S is called
positive if x<x?, and is called negative if 2*<x. For an element x of
S, the number of distinct natural powers of x is called the oder of .

In [3], we studied some properties of the archimedean equivalence
in an ordered semigroup in which every element is non-negative. In this
note, we define the archimedean equivalence ./ in a general ordered
semigroup and show that similar results hold in this general case.

Definition. The archimedean equivalence i on S is defined by:

for x,y € S, x Ay tf and only if there exist natural numbers p, q,r

and s such that x?<y* and y" < 8.

Theorem 1. The archimedean equivalence A on S is an equiva-
lence relation on S. FEach A-class is & convex subsemigroup of S.

Lemma 2. Fach JA-class contains at most one idempotent.

Theorem 3. For an J-class C, the following conditions are
equivalent :

(1) C contains an idempotent ;

(2) the set of all nonnegative elements of C is nonempty and
has the greatest element;

(8) the set of all nonpositive elements of C is nonempty and has
the least element ;

(4) C has the zero element;

(5) every element of C is an element of finite order;

(6) C contains an element of finite order;

(7) C contains at least one nonnegative and at least one non-
positive element.

Moreover, under these conditions, an idempotent of C is the
greatest nonnegative element, the least nonpositive element and also
the zero element of C.

Corollary 4. Let x be a nonnegative element and y be an element
of an J-class C of S. Then

(1) y=Zayif and only if y is nonnegative ;

(2) y=Zyxif and only if y is nonnegative.
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Definition. An J-class C of S is called periodic, if one of the
conditions (1)-(7) in Theorem 3 holds in C.

Theorem 5. Let C be a periodic A-class of S and let e be the
uniquely determined idempotent element of C. Moreover let C* and
C- be the set of all nonnegative elements and the set of all nonpositive
elements of C, respectively. Then C* and C~ are convex subsemi-
groups of S and

cruc-=¢, C*NC-={e}.
Moreover, for every xe C* and y e C~, we have x<y.

Let C be a nonperiodic /-class of S. Then either every element
of C is positive or every element of C is negative. In the former case,
C is called a positive nonperiodic _A-class and, in the latter case, C is
called a negative nonperiodic A-class.

Theorem 6. Let C be a positive nonperiodic A-class of S. Then
x<xy and x<yx for every x,y c C.

Theorem 7. The archimedean equivalence A on S is the least
equivalence relation B on S such that each P-class is a convex sub-
semigroup of S.
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