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Totoki [6] has shown that strongly mixing Gaussian flows are all
order mixing. As is well-known, the all order mixing implies the
weak mixing and the weak mixing implies the ergodicity. Conversely,
one can ask for which class of transformations ergodicity implies all
order mixing. Halmos [2] has proved that if a continuous automor-
phism of a compact Abelian group is ergodic, then the automorphism
is strongly mixing (i.e. 1-order mixing), and Rohlin [4] has proved
further that every ergodic continuous automorphism of a compact
Abelian group is all order mixing.

In this paper we study some classes of the transformations of
which ergodicity and strong mixing imply all order mixing respec-
tively. Our transformations were first topologically studied by
Keynes and Robertson in their paper [1].

Let (2, B, m) be a probability measure space and I be the set of
all integers or real numbers. Consider a group G of homeomorphisms
of I and for each g € G, define an automorphism T, of (@ 2, @ B, i@m)
as follows:

T (wi|teD=(w,4|te]) (w”iel)e%!).
We call each T, a G-index automorphism.

Definitions. (i) T, is ergodic if for every E, F e @.@ with

positive measure, there exists a positive integer » such that ©
Xm(T2ENF)>0.

iel
(ii) T, is weakly mizing if the product automorphism 7,7, is
ergodic.
(iii) T, is strongly mixing if for every E,F ¢ .®1_@ with positive
measure, te
lim @m(T?ENF) =i(e>§1m(E)ie@m(F).

n-roo i€I1
Lemma 1. Let gxe. If T, is ergodic, then there exists a
positive integer n such that g™(a) N B=0 holds for every finite subsets
a, BofI.
Proof. Suppose there exist finite subsets a, 8 of I such that
9" ()N B=0 for all n. Choosing A4, B ¢ B with positive measure so
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that m(A N B)=0 and putting
E= (®A)®( ® 2) and F= (®B)®( ® 2),

t€l—a teIl-g
one readily obtams ®m(T" ENF)=0 for all n. But this contradicts
the ergodicity of T,. The proof is completed.

Theorem 2. The following statements are equivalent to omne
another :

(i) T, s ergodic for all g=xe,

(ii) G has no elements of finite order except the unit element
and (I, ?) is a strongly effective group,

(iii) T, vs all order mixing for all g=e.

Clearly (iii) implies (i). We shall establish the theorem in the
following propositions.

Proposition 3. (i) tmplies (ii).

Proof. Suppose there is an element g(x¢) in G such that there
exists a positive integer » with g»=e. Let G,={e,g*%, ---,9*" "}
Then there exist finite subsets a, S8 of I so that g(a)N B=0 for all
g € G,. Noticing that for every k=0, g**=g*/, where k=j mod |n|,
one can immediately find that there exist A,Be ®.‘B with positive

measure such that ®m(T"A NB)=0 for every k and g€ G, This

contradiction shows that G has no elements of finite order except e.
Next suppose (I, G) is not strongly effective. Then there exist g(xe)
in G and ¢ in I with g(7)=4. Moreover, g"xe and g™(¢)=1¢ for all
n+0. Let a=pf={i}. Take A from P with m(4)m(A°)>0 and put
A=(RAXN( ® 2 and B=(RAIA ® 2.

i€a icl—a i€B iel-g

Then for all n, @m(T;‘flﬂﬁ):O. This contradicts, too. The result
follows. e

Proposition 4. (i) implies (iii).

Proof. Let r be an arbitrary positive integer. Consider a sub-
family {k, ;}j-o of integers satisfying the conditions: %, ; ,<k, ; and

lim 112};1 [k, ;—k, ;. ]J=oco0 and consider a sequence A, A4, ---,4, of
n-—o0

X B-measurable sets which have positive measure. Let g=e.

i€l

Case I. Suppose that for every 7, 057,
Aj=(®Ai j)@( ® Q)

where each a; is a finite subset of 1. Set E’z j=neZ: g"a)Na ja;!Z)}
where Z denotes the set of all integers. Then we see that E, ;1,7

=0,1, ..., r, are finite subsets of Z. So there exists a positive integer
p; ;such that for alln >p, ;, g*»ia; N g*»ia;=0(ix7). Putp= max p,,,

05isjsr

then g*mia, N g*mio;=0 (0<ixj<7) for all n>p. Thus we have
@m( WMAO 1 ®m(A,) (n>p).
= Jj=0tel

iel
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It is easily verified that if each A, is the finite union of the sets
of the form in Case I, then
lim ®@m () T fA,) 1 @m(A,).
j=01ieIl

n—e jel (jzo

Case II. Let A, A, ---,A, be arbitrary X B-measurable sets.
i€l
Then for any positive number &, there exist X $B-measurable sets

By, B,, - - -, B, such that each B, is the finite unig;f of the sets of the
form in Case I and for every k, ;
® m(TimiA QT iB,)<e.

iel
Therefore

®m< (\ TimiA @m Tin. fBj> <@+ 1e

terl
and there exists a pos1t1ve 1nteger n, such that for all n>n,,

®m( Tkn»fB,) n®m(Bj)}<e.

ierl J=014i€el

Thus we have

@m(m T, fAj) 1 ® mA,)|<@r+3e.

i€l j=04ierI
and this completes the proof.

Corollary 5. Let G be the group generated by a mnontrivial
homeomorphism g of I. Then the following statements are equivalent
to one another:

(i) T,s ergodic,

(ii) T, is strongly mizing,

(i) T, is all order mixzing.

Remark. Let I=Z and g(:)>¢ for every icI. The G-index
automorphism T, is a Kolmogorov automorphism.

Next we shall show that the foregoing statements hold for a
certain flow.

Let I be the set of all real numbers and consider a topological
flow G={g,} on I. Let T, be a G-index automorphism of (@Q

X B, ®m) and put S,=T,,. Then {S;} will be called a G-index ﬂow

:)exllr thé %roduct measure space. We assume that the set {g(a): 0(s|Z ¢t}

is bounded for any bounded subset « of I and for any positive number .

Lemma 6. If o G-index flow {S;} is ergodic, then there exists a
positive number t such that g,(a)NB=0 holds for every bounded
subsets a, B of I.

We have the following theorem whose proof is similar to that of
Theorem 2.

Theorem 7. The following statements are equivalent to one
another :

(i) {S;}is ergodic,
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(ii) It holds that g,(D) =1 for all tx0 and icl,

(ii) {S.} is strongly mixing,

(iv) {S.} is all order mixing.

Remark. If for all i eI and every pair t, s (t>3), 9,(1) >¢,(t) then
{S;} is a Kolmogorov flow.

The following theorem supplies a necessary and sufficient condi-
tion for weakly mixing property of a general measurable flow.

Theorem 8. Let {T,} be a measurable flow on (2, B, m). {T,}1is
weakly mixing if and only if for every pair A, B ¢ B with positive
measure, there exists a subset M of [0, + co) satisfying the conditions :

(i) lim LoUD _q

Tvoo T

(i) m(T,ANB)>0 (te M),

where Ly(M)=sup [s: se M] (T'>0).

Proof. Susﬁf)ose {T,} is weakly mixing. Then for every A,Be B
with positive measure, there exists a subset M, of [0, + o) with
density zero such that

lim m(T,ANB)=m(A)m(B) (see [3]).

t—oo,tE Mg
Thus for all ¢ not in M, and larger than some positive number ¢,
m(T,ANB)>0. Let M=M,U[0,t,) and L,(M)=sup [s: se M] (T >0).
s<T

Obviously the set M satisfies the conditions (i) and (ii). Conversely,
let the set M satisfy the conditions (i) and (ii) and ¢ be a given positive
number. The NZM, where N={kt: k=1,2,...}. In fact this
follows from that the upper density of N is positive. Therefore, T,
is ergodic and hence {7} is weakly mixing (see [5]).

The author expresses his sincerest thanks to Prof. S. Tsurumi and
Prof. Y. Ito who have given valuable advices.
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