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3. On wM-Spaces. 1

By Tadashi IsHII
Utsunomiya University

(Comm. by Kinjir6 KUNUGI, M. J. A., Jan. 12, 1970)

1. Introduction. The purpose of the present paper is to intro-
duce the notion of wM-spaces, which is a generalization of M-spaces
introduced by K. Morita [6], and to show some preperties of these
spaces. For a sequence {¥,} of open (or closed) coverings of a topol-
ogical space X, we shall consider the following two conditions:

If {K,} is a decreasing sequence of non-empty subsets of X such
that K,c St (x,, %,) for each n and for some point z, of X, then
NK,x0.
If {K,} is a decreasing sequence of non-empty subsets of X such
that K,cSt?*(x,, %,) for each n and for some point x, of X, then
NK=x0.>

A space X is an M-space if there exists a normal sequence {%,} of
open coverings of X satisfying (M,). A space X is an M*-space
(M*-space) if there exists a sequence {§,} of locally finite (closure pre-
serving) closed coverings of X satisfying (M,) (T. Ishii [2], F. Siwiec
and J. Nagata [8]). A space X is a wd-space if there exists a sequence
{%,} of open coverings of X satisfying (M, (C. Borges [1]). As is
shown by K. Morita [7], there exists an M*-space which is locally
compact Hausdorff but not an M-space. Further, in our previous
paper [3], we proved that a normal space X is an M-space if and only
if it is an M*-gpace.

Now we shall define wM-spaces including all M-spaces, M*-spaces
and M#-gpaces.

Definition. A space X is a wM-space if there exists a sequence
{2,} of open coverings of X satisfying (M,).

In the above definition, we may assume without loss of generality
that %, ., refines U, for each n.

As a remarkable property of a wM-space, we can prove that every
normal wM-space is strongly normal, that is, collectionwise normal
and countably paracompact (Theorem 2.4). This result plays an
important role in metrizability of wM-spaces in the next paper.
Throughout this paper we assume at least T, for every topological
spaces unless otherwise specified.

(M)

(M,)

1) For each positive integer k, St#(x¢, %,) denotes the iterated star of a point
%o in each covering %,.
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We express our hearty thanks to Prof. K. Morita for his kind
advices.

2. Some properties of wM.-spaces.

Theorem 2.1. For a space X, the following conditions are
equivalent.

(1) X is a wM-space with a sequence {%,} of open coverings of
X satisfying (M,).

(2) There exists a sequence {U,} of open coverings of X such
that, for any locally finite sequence {A,} of subsets of X, {St(4A,, A |
n=1,2, ...} s locally finite in X.

(8) There exists a sequence {U,} of open coverings of X such that,
for any discrete sequence {x,} of points of X, {St (x,, ¥,)|n=1,2, ...}
8 locally finite in X.

Proof. (1)—(2). Let X be a wM-space with a decreasing se-
quence {¥,} of open coverings of X satisfying (M,). Then we can
prove that, for any locally finite sequence {A,} of subsets of X,
{St(4,,¥,)} is locally finite in X. Indeed, if not, then for some
locally finite sequence {4,} of subsets of X, {St(4,, A,)} is not locally
finite in X. Hence there exists a point x, such that any neighborhood
of z, intersects infinitely many elements of {St(4,, %,)}. Therefore,
for each 7, we can select some positive integer i(n) such that St (x,, 2,)
n St (Ai(n)’ 2Ii(n)) =‘F 0, n < ’l:(?’l/). Let yi(n) € St (xo, g[n) N St (Ai(n)y 2[i(n))-
Then the sequence {¥;,,} has an accumulation point y, in X, and hence
we can select a subsequence {y;,} of {¥;x} such that y,.,, e St (y,, %,),
(n)<jn). Since Y;um € St(A;u,), Wjm) TSt (A wm), A,), We have A,
NSt (y,, A,) 0. Let 25, € Ay N St2(y,, A,). Then the sequence
{#;} has an accumulation point in X by (M,), while it has no accumu-
lation point in X by local finiteness of {4,.,,}. This is a contradiction.
Hence (2) holds.

(2)—(3). This implication is obvious.

(3)—(1). Let {,} be a sequence of open coverings of X such that,
for any discrete sequence {x,} of points of X, {St(x,, %,)} is locally
finite in X. First, we prove that {%,} satisfies (M,). To prove this,
assume to be contrary. Then there exists a discrete sequence {z,} of
points of X such that z, ¢ St (z,, A,) for each » and for some point z,
of X. Since z,¢ St (x,, %U,) for each n, {St(x,, A,)} is not locally finite
in X, while it is locally finite in X by our assumption. This is a con-
tradiction. Hence {%,} satisfies (M,). Next, we prove that {,} satis-
fies (M,). To prove this, assume to be contrary. Then there exists a
discrete sequence {x,} of points of X such that x, e St?(z,, %,) for each
n and for some point z, of X. Since St (x,, A,) NSt (x,, A,) %0, we can
select a point y, ¢ St (z,,, A,) N St (x,, A,) for each n. Then the sequence
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{y.} has an accumulation point in X by (M,), while it has no accumu-
lation point in X, because {St (x,, %,)} is locally finite in X. Thisis a
contradiction. Hence (1) holds. Thus we complete the proof.

As the other characterizations of wlM-spaces, we can prove the
following

Theorem 2.2. For o space X, the following conditions are
equivalent.

(1) X isa wM-space.

(2) FEach point x of X has a sequence {U,(x)} of symmetric neigh-
borhoods (i.e., y e U,(x) implies x € U,(y)) satisfying the condition (x)
below :

If {x,} is a sequence of points of X such that x, € Ui(x,) for each
(x) {n and for some point x, of X, then the sequence {x,} has an ac-
cumulation point in X, where Ui(x,) = U{U.(¥) |y € U.(x,)}.

(3) Each point x of X has a sequence {U,(x)} of symmetric netgh-
borhoods such that, for any locally finite sequence {A,} of subsets of X,
{U.4)|n=1,2, ...} is locally finite in X, where U,(A,) = U{U,()
ly e A,}.

(4) Each point x of X has a sequence {U,(x)} of symmetric
netghborhoods such that, for any discrete sequence {x,} of points of X,
{Uu(x)|n=1,2, ...} is locally finite in X.

Proof. (1)—(2). Let X be a wM-space with a sequence {%,}
of open coverings of X satisfying (M,), and put U, (x)=St (x, %,) for
each point # of X and for each n. Then {U,(x)|n=1,2,...} is a
sequence of symmetric neighborhoods of x and satisfies (x), because
U2 (x) =St (x, UA,).

(2)—(3). This implication can be proved by the similar way as
in the proof of the implication (1)—(2) in Theorem 2.1.

(8)—(4). This implication is obvious.

(4)—(@1). Suppose that each point x of X has a sequence {U,(x)}
of symmetric neighborhoods such that, for any discrete sequence {x,}
of points of X, {U,(x,)} is locally finite in X. Then it is easily verified
that any sequence {x,} of points of X such that x, e U,(x,) for some
point z, of X and for each »n has an accumulation point in X. Further,
it is proved by induction for % that any sequence {z,} of points of X
such that z, ¢ Ut(x,) for some point z, of X and for each » has an ac-
cumulation point in X.» Now let us put U,={Int U,(x)|x e X} for
n=1,2, ..., Then {%,} satisfies (M,), because St’(zx, %,) C Ui (x).
Hence (1) holds. Thus we complete the proof.

Theorem 2.3. Ewvery M*-space is o wM-space.

2) For a point 2, of X and for each n, the sets U¥(x,), k=2, 8,- .-, are defined
inductively, i.e., Uk(we)= U {U@)ly € U ~Yaxo)}.
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Proof. Let X be an M#space with a sequence {%¥,} of closure
preserving closed coverings of X satisfying (M,), where we may assume
without loss of generality that {¥,} is decreasing. Then for each k=2
it is easily proved that, if {K,} is a decreasing sequence of non-empty
subsets of X such that K,c St* (x,, §,.) for each n and for some point
z, of X, then NK,x0. Let us put %,={Int(St(z,F,))|ze X} for
each n. Then {%,} is a sequence of open coverings of X and satisfies
(M,), because St?(x, A,)CSt!(x,F,). Hence X is a wM-space. Thus
we complete the proof.

In view of Theorem 2.3, all M- and M*-spaces are also wM-
spaces.

Now we shall show by an example that a wd-space is not a wM-
space in general, that is, the condition (M,) does not imply the condition
(M)).

Example. (4 wd-space which is not a wM-space). Let R be the
set of ordinals not greater than the first infinite ordinal w, and let S
be the set of ordinals not greater than the first uncountable ordinal 2,
each with the order topology. If we put X=RXS—{(w, 2)}, then the
space X is a locally compact Hausdorff w4-space but is not a wM-space.
Indeed, if we put

Ue={l} xS, ) (AXS—{@))[1=i<e}

for each m, then {%,} satisfies (M,. But, if we put z,=(x, Q),
n=1,2, ..., then there is no sequence {8,} of open coverings of X such
that {St(x,, 8,)} is locally finite in X, and hence X is not a wM-space.
Finally, it is obvious that X is a locally compact Hausdorff space.

Theorem 2.4, Ewvery normal wM-space is strongly normal, that
18, collectionwise normal and countably paracompact.

To prove Theorem 2.4, we use the following lemmas.

Lemma 2.5. Let X be a wM-space with a sequence {,} of open
coverings of X satisfying (M,), and let k be a positive integer such
that k=3. If {x,} s a sequence of points of X such that x, e St* (2, U,)
for each n and for some point x, of X, then the sequence {x,} has an
accumulation point in X.

This lemma immediately follows from (3) in Theorem 2.1 by in-
duction for k.

Lemma 2.6. Every wM-space is countably paracompact.

Proof. Let X be a wM-space with a decreasing sequence {¥,} of
open coverings of X satisfying (M,), and let {G,} be any countable open
covering of X such that G,cG,,,,n=1,2,.... Let us put

F,=X-S¢#X-G,,%,), n=12,....
Then X=UF,. Indeed, if not, then there exists a point xz, of X such
that x,e X— UF,=NS*(X—-G,,%,), and hence St*(x,, ¥,)N(X—-G,)
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%0 for n=1,2, .... This shows that N (X—G,)=0 by (M,), which is

a contradiction. Hence X=UF,. Now let us put
H=X-StX-G,,%,), n=1,2, ...

Then clearly F',C H, for each n, and hence X= U H,. Further it holds

that H,c G, for each n. Consequently, by a theorem of F. Ishikawa

[4], X is countably paracompact. Thus we complete the proof.

Proof of Theorem 2.4. Let X be a normal wM-space with a
decreasing sequence {¥,} of open coverings of X satisfying (M,). Asis
proved by M. Katetov [5], a normal space is strongly normal if and
only if for every locally finite collection {F,} of closed subsets of X
there exists a locally finite collection {H,} of open subsets of X such
that F,C H, for each 4. To apply this theorem to our case, let {F',} be
a locally finite collection of closed subsets of X. Then it is easily
proved by (M,) that for each point # of X there exists some ¥, such
that {1|St*(z, %,) N F',20} is a finite set. For each =, let us denote by
A, the subset of X consisting of points « of X such that {1|St*(x, %,)
NF,x0} is a finite set, and put B,=Int A,. Then clearly B,CB,,,
for each n, and further it is proved that {B,} is an open covering of X.
Indeed, let 2, X. Then, in view of Lemma 2.5, there exists some %,
such that {4|St®(x,, %,) N F,x0} is a finite set. Therefore, for each
point z of St (x,, A,), {A|St* (x, A,) N F,>0} is a finite set. This shows
that St (x, A,)CA4,, i.e., x,e B,=Int A,, and hence X=UB,. Now,
since X is countably paracompact by Lemma 2.6, there exists a locally
finite open refinement {G,} of {B,} such that G,C B, for each n. Let us

put G,,=St(F,A,)NG, and H,= C)Gm. Then clearly F,cH, for
n=1

each 4, and further {H,} is a locally finite collection of open subsets of
X. Indeed, let z,¢ X, and U(z)=X— U{G,|x, ¢ G,}. Since {G,
[n=1,2, -- -} is locally finite in X, U(x,) is an open neighborhood of x,.
Let {G,4 |t=1, ---,k} be all of the elements of {G,} each closure of
which contains z,, Then from x, e G, CB,q,i=1, - -, k, it follows
that {4 | St?(x,, A,) N F, 20} is a finite set for ¢=1, - - -, k. This implies
that {2|St (2, A,n) NSL(F,, Ay 0} is a finite set for i=1,..., k.
Hence {4|St (@), Ay ;y) N Giri, 0} is also a finite set for each 1<k. Let
us put m=Max {nQ), - - -, n(k)}, V(x,) =St (x, A,) N Uy, 4,={A| V(x,)

Ginyx0} and I'= ij A;. Then 4, is a finite set for each 1<k, and
i=1

hence so is I'. Further V(x, intersects only elements H, such that
Ae'. Consequently {H,} is locally finite in X. Thus we complete the
proof.

In spite of validity of Theorem 2.4, we don’t know whether every
normal wM-space is an M-space or not.
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